You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
309 lines
8.3 KiB
309 lines
8.3 KiB
2 years ago
|
*> \brief \b DSYTRS_AA
|
||
|
*
|
||
|
* =========== DOCUMENTATION ===========
|
||
|
*
|
||
|
* Online html documentation available at
|
||
|
* http://www.netlib.org/lapack/explore-html/
|
||
|
*
|
||
|
*> \htmlonly
|
||
|
*> Download DSYTRS_AA + dependencies
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsytrs_aa.f">
|
||
|
*> [TGZ]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsytrs_aa.f">
|
||
|
*> [ZIP]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsytrs_aa.f">
|
||
|
*> [TXT]</a>
|
||
|
*> \endhtmlonly
|
||
|
*
|
||
|
* Definition:
|
||
|
* ===========
|
||
|
*
|
||
|
* SUBROUTINE DSYTRS_AA( UPLO, N, NRHS, A, LDA, IPIV, B, LDB,
|
||
|
* WORK, LWORK, INFO )
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
* CHARACTER UPLO
|
||
|
* INTEGER N, NRHS, LDA, LDB, LWORK, INFO
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
* INTEGER IPIV( * )
|
||
|
* DOUBLE PRECISION A( LDA, * ), B( LDB, * ), WORK( * )
|
||
|
* ..
|
||
|
*
|
||
|
*
|
||
|
*> \par Purpose:
|
||
|
* =============
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*> DSYTRS_AA solves a system of linear equations A*X = B with a real
|
||
|
*> symmetric matrix A using the factorization A = U**T*T*U or
|
||
|
*> A = L*T*L**T computed by DSYTRF_AA.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Arguments:
|
||
|
* ==========
|
||
|
*
|
||
|
*> \param[in] UPLO
|
||
|
*> \verbatim
|
||
|
*> UPLO is CHARACTER*1
|
||
|
*> Specifies whether the details of the factorization are stored
|
||
|
*> as an upper or lower triangular matrix.
|
||
|
*> = 'U': Upper triangular, form is A = U**T*T*U;
|
||
|
*> = 'L': Lower triangular, form is A = L*T*L**T.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] N
|
||
|
*> \verbatim
|
||
|
*> N is INTEGER
|
||
|
*> The order of the matrix A. N >= 0.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] NRHS
|
||
|
*> \verbatim
|
||
|
*> NRHS is INTEGER
|
||
|
*> The number of right hand sides, i.e., the number of columns
|
||
|
*> of the matrix B. NRHS >= 0.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] A
|
||
|
*> \verbatim
|
||
|
*> A is DOUBLE PRECISION array, dimension (LDA,N)
|
||
|
*> Details of factors computed by DSYTRF_AA.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDA
|
||
|
*> \verbatim
|
||
|
*> LDA is INTEGER
|
||
|
*> The leading dimension of the array A. LDA >= max(1,N).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] IPIV
|
||
|
*> \verbatim
|
||
|
*> IPIV is INTEGER array, dimension (N)
|
||
|
*> Details of the interchanges as computed by DSYTRF_AA.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] B
|
||
|
*> \verbatim
|
||
|
*> B is DOUBLE PRECISION array, dimension (LDB,NRHS)
|
||
|
*> On entry, the right hand side matrix B.
|
||
|
*> On exit, the solution matrix X.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDB
|
||
|
*> \verbatim
|
||
|
*> LDB is INTEGER
|
||
|
*> The leading dimension of the array B. LDB >= max(1,N).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] WORK
|
||
|
*> \verbatim
|
||
|
*> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LWORK
|
||
|
*> \verbatim
|
||
|
*> LWORK is INTEGER
|
||
|
*> The dimension of the array WORK. LWORK >= max(1,3*N-2).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] INFO
|
||
|
*> \verbatim
|
||
|
*> INFO is INTEGER
|
||
|
*> = 0: successful exit
|
||
|
*> < 0: if INFO = -i, the i-th argument had an illegal value
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Authors:
|
||
|
* ========
|
||
|
*
|
||
|
*> \author Univ. of Tennessee
|
||
|
*> \author Univ. of California Berkeley
|
||
|
*> \author Univ. of Colorado Denver
|
||
|
*> \author NAG Ltd.
|
||
|
*
|
||
|
*> \ingroup doubleSYcomputational
|
||
|
*
|
||
|
* =====================================================================
|
||
|
SUBROUTINE DSYTRS_AA( UPLO, N, NRHS, A, LDA, IPIV, B, LDB,
|
||
|
$ WORK, LWORK, INFO )
|
||
|
*
|
||
|
* -- LAPACK computational routine --
|
||
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||
|
*
|
||
|
IMPLICIT NONE
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
CHARACTER UPLO
|
||
|
INTEGER N, NRHS, LDA, LDB, LWORK, INFO
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
INTEGER IPIV( * )
|
||
|
DOUBLE PRECISION A( LDA, * ), B( LDB, * ), WORK( * )
|
||
|
* ..
|
||
|
*
|
||
|
* =====================================================================
|
||
|
*
|
||
|
DOUBLE PRECISION ONE
|
||
|
PARAMETER ( ONE = 1.0D+0 )
|
||
|
* ..
|
||
|
* .. Local Scalars ..
|
||
|
LOGICAL LQUERY, UPPER
|
||
|
INTEGER K, KP, LWKOPT
|
||
|
* ..
|
||
|
* .. External Functions ..
|
||
|
LOGICAL LSAME
|
||
|
EXTERNAL LSAME
|
||
|
* ..
|
||
|
* .. External Subroutines ..
|
||
|
EXTERNAL DLACPY, DGTSV, DSWAP, DTRSM, XERBLA
|
||
|
* ..
|
||
|
* .. Intrinsic Functions ..
|
||
|
INTRINSIC MAX
|
||
|
* ..
|
||
|
* .. Executable Statements ..
|
||
|
*
|
||
|
INFO = 0
|
||
|
UPPER = LSAME( UPLO, 'U' )
|
||
|
LQUERY = ( LWORK.EQ.-1 )
|
||
|
IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
|
||
|
INFO = -1
|
||
|
ELSE IF( N.LT.0 ) THEN
|
||
|
INFO = -2
|
||
|
ELSE IF( NRHS.LT.0 ) THEN
|
||
|
INFO = -3
|
||
|
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
|
||
|
INFO = -5
|
||
|
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
|
||
|
INFO = -8
|
||
|
ELSE IF( LWORK.LT.MAX( 1, 3*N-2 ) .AND. .NOT.LQUERY ) THEN
|
||
|
INFO = -10
|
||
|
END IF
|
||
|
IF( INFO.NE.0 ) THEN
|
||
|
CALL XERBLA( 'DSYTRS_AA', -INFO )
|
||
|
RETURN
|
||
|
ELSE IF( LQUERY ) THEN
|
||
|
LWKOPT = (3*N-2)
|
||
|
WORK( 1 ) = LWKOPT
|
||
|
RETURN
|
||
|
END IF
|
||
|
*
|
||
|
* Quick return if possible
|
||
|
*
|
||
|
IF( N.EQ.0 .OR. NRHS.EQ.0 )
|
||
|
$ RETURN
|
||
|
*
|
||
|
IF( UPPER ) THEN
|
||
|
*
|
||
|
* Solve A*X = B, where A = U**T*T*U.
|
||
|
*
|
||
|
* 1) Forward substitution with U**T
|
||
|
*
|
||
|
IF( N.GT.1 ) THEN
|
||
|
*
|
||
|
* Pivot, P**T * B -> B
|
||
|
*
|
||
|
DO K = 1, N
|
||
|
KP = IPIV( K )
|
||
|
IF( KP.NE.K )
|
||
|
$ CALL DSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
|
||
|
END DO
|
||
|
*
|
||
|
* Compute U**T \ B -> B [ (U**T \P**T * B) ]
|
||
|
*
|
||
|
CALL DTRSM('L', 'U', 'T', 'U', N-1, NRHS, ONE, A( 1, 2 ),
|
||
|
$ LDA, B( 2, 1 ), LDB)
|
||
|
END IF
|
||
|
*
|
||
|
* 2) Solve with triangular matrix T
|
||
|
*
|
||
|
* Compute T \ B -> B [ T \ (U**T \P**T * B) ]
|
||
|
*
|
||
|
CALL DLACPY( 'F', 1, N, A( 1, 1 ), LDA+1, WORK( N ), 1)
|
||
|
IF( N.GT.1 ) THEN
|
||
|
CALL DLACPY( 'F', 1, N-1, A( 1, 2 ), LDA+1, WORK( 1 ), 1 )
|
||
|
CALL DLACPY( 'F', 1, N-1, A( 1, 2 ), LDA+1, WORK( 2*N ), 1 )
|
||
|
END IF
|
||
|
CALL DGTSV( N, NRHS, WORK( 1 ), WORK( N ), WORK( 2*N ), B, LDB,
|
||
|
$ INFO )
|
||
|
*
|
||
|
* 3) Backward substitution with U
|
||
|
*
|
||
|
IF( N.GT.1 ) THEN
|
||
|
*
|
||
|
* Compute U \ B -> B [ U \ (T \ (U**T \P**T * B) ) ]
|
||
|
*
|
||
|
CALL DTRSM( 'L', 'U', 'N', 'U', N-1, NRHS, ONE, A( 1, 2 ),
|
||
|
$ LDA, B( 2, 1 ), LDB)
|
||
|
*
|
||
|
* Pivot, P * B -> B [ P * (U \ (T \ (U**T \P**T * B) )) ]
|
||
|
*
|
||
|
DO K = N, 1, -1
|
||
|
KP = IPIV( K )
|
||
|
IF( KP.NE.K )
|
||
|
$ CALL DSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
|
||
|
END DO
|
||
|
END IF
|
||
|
*
|
||
|
ELSE
|
||
|
*
|
||
|
* Solve A*X = B, where A = L*T*L**T.
|
||
|
*
|
||
|
* 1) Forward substitution with L
|
||
|
*
|
||
|
IF( N.GT.1 ) THEN
|
||
|
*
|
||
|
* Pivot, P**T * B -> B
|
||
|
*
|
||
|
DO K = 1, N
|
||
|
KP = IPIV( K )
|
||
|
IF( KP.NE.K )
|
||
|
$ CALL DSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
|
||
|
END DO
|
||
|
*
|
||
|
* Compute L \ B -> B [ (L \P**T * B) ]
|
||
|
*
|
||
|
CALL DTRSM( 'L', 'L', 'N', 'U', N-1, NRHS, ONE, A( 2, 1 ),
|
||
|
$ LDA, B( 2, 1 ), LDB)
|
||
|
END IF
|
||
|
*
|
||
|
* 2) Solve with triangular matrix T
|
||
|
*
|
||
|
* Compute T \ B -> B [ T \ (L \P**T * B) ]
|
||
|
*
|
||
|
CALL DLACPY( 'F', 1, N, A(1, 1), LDA+1, WORK(N), 1)
|
||
|
IF( N.GT.1 ) THEN
|
||
|
CALL DLACPY( 'F', 1, N-1, A( 2, 1 ), LDA+1, WORK( 1 ), 1 )
|
||
|
CALL DLACPY( 'F', 1, N-1, A( 2, 1 ), LDA+1, WORK( 2*N ), 1 )
|
||
|
END IF
|
||
|
CALL DGTSV( N, NRHS, WORK( 1 ), WORK(N), WORK( 2*N ), B, LDB,
|
||
|
$ INFO)
|
||
|
*
|
||
|
* 3) Backward substitution with L**T
|
||
|
*
|
||
|
IF( N.GT.1 ) THEN
|
||
|
*
|
||
|
* Compute (L**T \ B) -> B [ L**T \ (T \ (L \P**T * B) ) ]
|
||
|
*
|
||
|
CALL DTRSM( 'L', 'L', 'T', 'U', N-1, NRHS, ONE, A( 2, 1 ),
|
||
|
$ LDA, B( 2, 1 ), LDB)
|
||
|
*
|
||
|
* Pivot, P * B -> B [ P * (L**T \ (T \ (L \P**T * B) )) ]
|
||
|
*
|
||
|
DO K = N, 1, -1
|
||
|
KP = IPIV( K )
|
||
|
IF( KP.NE.K )
|
||
|
$ CALL DSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
|
||
|
END DO
|
||
|
END IF
|
||
|
*
|
||
|
END IF
|
||
|
*
|
||
|
RETURN
|
||
|
*
|
||
|
* End of DSYTRS_AA
|
||
|
*
|
||
|
END
|