Cloned library LAPACK-3.11.0 with extra build files for internal package management.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1242 lines
44 KiB

2 years ago
*> \brief \b DTRSYL3
*
* Definition:
* ===========
*
*
*> \par Purpose
* =============
*>
*> \verbatim
*>
*> DTRSYL3 solves the real Sylvester matrix equation:
*>
*> op(A)*X + X*op(B) = scale*C or
*> op(A)*X - X*op(B) = scale*C,
*>
*> where op(A) = A or A**T, and A and B are both upper quasi-
*> triangular. A is M-by-M and B is N-by-N; the right hand side C and
*> the solution X are M-by-N; and scale is an output scale factor, set
*> <= 1 to avoid overflow in X.
*>
*> A and B must be in Schur canonical form (as returned by DHSEQR), that
*> is, block upper triangular with 1-by-1 and 2-by-2 diagonal blocks;
*> each 2-by-2 diagonal block has its diagonal elements equal and its
*> off-diagonal elements of opposite sign.
*>
*> This is the block version of the algorithm.
*> \endverbatim
*
* Arguments
* =========
*
*> \param[in] TRANA
*> \verbatim
*> TRANA is CHARACTER*1
*> Specifies the option op(A):
*> = 'N': op(A) = A (No transpose)
*> = 'T': op(A) = A**T (Transpose)
*> = 'C': op(A) = A**H (Conjugate transpose = Transpose)
*> \endverbatim
*>
*> \param[in] TRANB
*> \verbatim
*> TRANB is CHARACTER*1
*> Specifies the option op(B):
*> = 'N': op(B) = B (No transpose)
*> = 'T': op(B) = B**T (Transpose)
*> = 'C': op(B) = B**H (Conjugate transpose = Transpose)
*> \endverbatim
*>
*> \param[in] ISGN
*> \verbatim
*> ISGN is INTEGER
*> Specifies the sign in the equation:
*> = +1: solve op(A)*X + X*op(B) = scale*C
*> = -1: solve op(A)*X - X*op(B) = scale*C
*> \endverbatim
*>
*> \param[in] M
*> \verbatim
*> M is INTEGER
*> The order of the matrix A, and the number of rows in the
*> matrices X and C. M >= 0.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The order of the matrix B, and the number of columns in the
*> matrices X and C. N >= 0.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*> A is DOUBLE PRECISION array, dimension (LDA,M)
*> The upper quasi-triangular matrix A, in Schur canonical form.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the array A. LDA >= max(1,M).
*> \endverbatim
*>
*> \param[in] B
*> \verbatim
*> B is DOUBLE PRECISION array, dimension (LDB,N)
*> The upper quasi-triangular matrix B, in Schur canonical form.
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*> LDB is INTEGER
*> The leading dimension of the array B. LDB >= max(1,N).
*> \endverbatim
*>
*> \param[in,out] C
*> \verbatim
*> C is DOUBLE PRECISION array, dimension (LDC,N)
*> On entry, the M-by-N right hand side matrix C.
*> On exit, C is overwritten by the solution matrix X.
*> \endverbatim
*>
*> \param[in] LDC
*> \verbatim
*> LDC is INTEGER
*> The leading dimension of the array C. LDC >= max(1,M)
*> \endverbatim
*>
*> \param[out] SCALE
*> \verbatim
*> SCALE is DOUBLE PRECISION
*> The scale factor, scale, set <= 1 to avoid overflow in X.
*> \endverbatim
*>
*> \param[out] IWORK
*> \verbatim
*> IWORK is INTEGER array, dimension (MAX(1,LIWORK))
*> On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
*> \endverbatim
*>
*> \param[in] LIWORK
*> \verbatim
*> IWORK is INTEGER
*> The dimension of the array IWORK. LIWORK >= ((M + NB - 1) / NB + 1)
*> + ((N + NB - 1) / NB + 1), where NB is the optimal block size.
*>
*> If LIWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal dimension of the IWORK array,
*> returns this value as the first entry of the IWORK array, and
*> no error message related to LIWORK is issued by XERBLA.
*> \endverbatim
*>
*> \param[out] SWORK
*> \verbatim
*> SWORK is DOUBLE PRECISION array, dimension (MAX(2, ROWS),
*> MAX(1,COLS)).
*> On exit, if INFO = 0, SWORK(1) returns the optimal value ROWS
*> and SWORK(2) returns the optimal COLS.
*> \endverbatim
*>
*> \param[in] LDSWORK
*> \verbatim
*> LDSWORK is INTEGER
*> LDSWORK >= MAX(2,ROWS), where ROWS = ((M + NB - 1) / NB + 1)
*> and NB is the optimal block size.
*>
*> If LDSWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal dimensions of the SWORK matrix,
*> returns these values as the first and second entry of the SWORK
*> matrix, and no error message related LWORK is issued by XERBLA.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value
*> = 1: A and B have common or very close eigenvalues; perturbed
*> values were used to solve the equation (but the matrices
*> A and B are unchanged).
*> \endverbatim
*
* =====================================================================
* References:
* E. S. Quintana-Orti and R. A. Van De Geijn (2003). Formal derivation of
* algorithms: The triangular Sylvester equation, ACM Transactions
* on Mathematical Software (TOMS), volume 29, pages 218--243.
*
* A. Schwarz and C. C. Kjelgaard Mikkelsen (2020). Robust Task-Parallel
* Solution of the Triangular Sylvester Equation. Lecture Notes in
* Computer Science, vol 12043, pages 82--92, Springer.
*
* Contributor:
* Angelika Schwarz, Umea University, Sweden.
*
* =====================================================================
SUBROUTINE DTRSYL3( TRANA, TRANB, ISGN, M, N, A, LDA, B, LDB, C,
$ LDC, SCALE, IWORK, LIWORK, SWORK, LDSWORK,
$ INFO )
IMPLICIT NONE
*
* .. Scalar Arguments ..
CHARACTER TRANA, TRANB
INTEGER INFO, ISGN, LDA, LDB, LDC, M, N,
$ LIWORK, LDSWORK
DOUBLE PRECISION SCALE
* ..
* .. Array Arguments ..
INTEGER IWORK( * )
DOUBLE PRECISION A( LDA, * ), B( LDB, * ), C( LDC, * ),
$ SWORK( LDSWORK, * )
* ..
* .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
* ..
* .. Local Scalars ..
LOGICAL NOTRNA, NOTRNB, LQUERY, SKIP
INTEGER AWRK, BWRK, I, I1, I2, IINFO, J, J1, J2, JJ,
$ K, K1, K2, L, L1, L2, LL, NBA, NB, NBB, PC
DOUBLE PRECISION ANRM, BIGNUM, BNRM, CNRM, SCAL, SCALOC,
$ SCAMIN, SGN, XNRM, BUF, SMLNUM
* ..
* .. Local Arrays ..
DOUBLE PRECISION WNRM( MAX( M, N ) )
* ..
* .. External Functions ..
LOGICAL LSAME
INTEGER ILAENV
DOUBLE PRECISION DLANGE, DLAMCH, DLARMM
EXTERNAL DLANGE, DLAMCH, DLARMM, ILAENV, LSAME
* ..
* .. External Subroutines ..
EXTERNAL DGEMM, DLASCL, DSCAL, DTRSYL, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, DBLE, EXPONENT, MAX, MIN
* ..
* .. Executable Statements ..
*
* Decode and Test input parameters
*
NOTRNA = LSAME( TRANA, 'N' )
NOTRNB = LSAME( TRANB, 'N' )
*
* Use the same block size for all matrices.
*
NB = MAX(8, ILAENV( 1, 'DTRSYL', '', M, N, -1, -1) )
*
* Compute number of blocks in A and B
*
NBA = MAX( 1, (M + NB - 1) / NB )
NBB = MAX( 1, (N + NB - 1) / NB )
*
* Compute workspace
*
INFO = 0
LQUERY = ( LIWORK.EQ.-1 .OR. LDSWORK.EQ.-1 )
IWORK( 1 ) = NBA + NBB + 2
IF( LQUERY ) THEN
LDSWORK = 2
SWORK( 1, 1 ) = MAX( NBA, NBB )
SWORK( 2, 1 ) = 2 * NBB + NBA
END IF
*
* Test the input arguments
*
IF( .NOT.NOTRNA .AND. .NOT.LSAME( TRANA, 'T' ) .AND. .NOT.
$ LSAME( TRANA, 'C' ) ) THEN
INFO = -1
ELSE IF( .NOT.NOTRNB .AND. .NOT.LSAME( TRANB, 'T' ) .AND. .NOT.
$ LSAME( TRANB, 'C' ) ) THEN
INFO = -2
ELSE IF( ISGN.NE.1 .AND. ISGN.NE.-1 ) THEN
INFO = -3
ELSE IF( M.LT.0 ) THEN
INFO = -4
ELSE IF( N.LT.0 ) THEN
INFO = -5
ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
INFO = -7
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
INFO = -9
ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
INFO = -11
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'DTRSYL3', -INFO )
RETURN
ELSE IF( LQUERY ) THEN
RETURN
END IF
*
* Quick return if possible
*
SCALE = ONE
IF( M.EQ.0 .OR. N.EQ.0 )
$ RETURN
*
* Use unblocked code for small problems or if insufficient
* workspaces are provided
*
IF( MIN( NBA, NBB ).EQ.1 .OR. LDSWORK.LT.MAX( NBA, NBB ) .OR.
$ LIWORK.LT.IWORK(1) ) THEN
CALL DTRSYL( TRANA, TRANB, ISGN, M, N, A, LDA, B, LDB,
$ C, LDC, SCALE, INFO )
RETURN
END IF
*
* Set constants to control overflow
*
SMLNUM = DLAMCH( 'S' )
BIGNUM = ONE / SMLNUM
*
* Partition A such that 2-by-2 blocks on the diagonal are not split
*
SKIP = .FALSE.
DO I = 1, NBA
IWORK( I ) = ( I - 1 ) * NB + 1
END DO
IWORK( NBA + 1 ) = M + 1
DO K = 1, NBA
L1 = IWORK( K )
L2 = IWORK( K + 1 ) - 1
DO L = L1, L2
IF( SKIP ) THEN
SKIP = .FALSE.
CYCLE
END IF
IF( L.GE.M ) THEN
* A( M, M ) is a 1-by-1 block
CYCLE
END IF
IF( A( L, L+1 ).NE.ZERO .AND. A( L+1, L ).NE.ZERO ) THEN
* Check if 2-by-2 block is split
IF( L + 1 .EQ. IWORK( K + 1 ) ) THEN
IWORK( K + 1 ) = IWORK( K + 1 ) + 1
CYCLE
END IF
SKIP = .TRUE.
END IF
END DO
END DO
IWORK( NBA + 1 ) = M + 1
IF( IWORK( NBA ).GE.IWORK( NBA + 1 ) ) THEN
IWORK( NBA ) = IWORK( NBA + 1 )
NBA = NBA - 1
END IF
*
* Partition B such that 2-by-2 blocks on the diagonal are not split
*
PC = NBA + 1
SKIP = .FALSE.
DO I = 1, NBB
IWORK( PC + I ) = ( I - 1 ) * NB + 1
END DO
IWORK( PC + NBB + 1 ) = N + 1
DO K = 1, NBB
L1 = IWORK( PC + K )
L2 = IWORK( PC + K + 1 ) - 1
DO L = L1, L2
IF( SKIP ) THEN
SKIP = .FALSE.
CYCLE
END IF
IF( L.GE.N ) THEN
* B( N, N ) is a 1-by-1 block
CYCLE
END IF
IF( B( L, L+1 ).NE.ZERO .AND. B( L+1, L ).NE.ZERO ) THEN
* Check if 2-by-2 block is split
IF( L + 1 .EQ. IWORK( PC + K + 1 ) ) THEN
IWORK( PC + K + 1 ) = IWORK( PC + K + 1 ) + 1
CYCLE
END IF
SKIP = .TRUE.
END IF
END DO
END DO
IWORK( PC + NBB + 1 ) = N + 1
IF( IWORK( PC + NBB ).GE.IWORK( PC + NBB + 1 ) ) THEN
IWORK( PC + NBB ) = IWORK( PC + NBB + 1 )
NBB = NBB - 1
END IF
*
* Set local scaling factors - must never attain zero.
*
DO L = 1, NBB
DO K = 1, NBA
SWORK( K, L ) = ONE
END DO
END DO
*
* Fallback scaling factor to prevent flushing of SWORK( K, L ) to zero.
* This scaling is to ensure compatibility with TRSYL and may get flushed.
*
BUF = ONE
*
* Compute upper bounds of blocks of A and B
*
AWRK = NBB
DO K = 1, NBA
K1 = IWORK( K )
K2 = IWORK( K + 1 )
DO L = K, NBA
L1 = IWORK( L )
L2 = IWORK( L + 1 )
IF( NOTRNA ) THEN
SWORK( K, AWRK + L ) = DLANGE( 'I', K2-K1, L2-L1,
$ A( K1, L1 ), LDA, WNRM )
ELSE
SWORK( L, AWRK + K ) = DLANGE( '1', K2-K1, L2-L1,
$ A( K1, L1 ), LDA, WNRM )
END IF
END DO
END DO
BWRK = NBB + NBA
DO K = 1, NBB
K1 = IWORK( PC + K )
K2 = IWORK( PC + K + 1 )
DO L = K, NBB
L1 = IWORK( PC + L )
L2 = IWORK( PC + L + 1 )
IF( NOTRNB ) THEN
SWORK( K, BWRK + L ) = DLANGE( 'I', K2-K1, L2-L1,
$ B( K1, L1 ), LDB, WNRM )
ELSE
SWORK( L, BWRK + K ) = DLANGE( '1', K2-K1, L2-L1,
$ B( K1, L1 ), LDB, WNRM )
END IF
END DO
END DO
*
SGN = DBLE( ISGN )
*
IF( NOTRNA .AND. NOTRNB ) THEN
*
* Solve A*X + ISGN*X*B = scale*C.
*
* The (K,L)th block of X is determined starting from
* bottom-left corner column by column by
*
* A(K,K)*X(K,L) + ISGN*X(K,L)*B(L,L) = C(K,L) - R(K,L)
*
* Where
* M L-1
* R(K,L) = SUM [A(K,I)*X(I,L)] + ISGN*SUM [X(K,J)*B(J,L)].
* I=K+1 J=1
*
* Start loop over block rows (index = K) and block columns (index = L)
*
DO K = NBA, 1, -1
*
* K1: row index of the first row in X( K, L )
* K2: row index of the first row in X( K+1, L )
* so the K2 - K1 is the column count of the block X( K, L )
*
K1 = IWORK( K )
K2 = IWORK( K + 1 )
DO L = 1, NBB
*
* L1: column index of the first column in X( K, L )
* L2: column index of the first column in X( K, L + 1)
* so that L2 - L1 is the row count of the block X( K, L )
*
L1 = IWORK( PC + L )
L2 = IWORK( PC + L + 1 )
*
CALL DTRSYL( TRANA, TRANB, ISGN, K2-K1, L2-L1,
$ A( K1, K1 ), LDA,
$ B( L1, L1 ), LDB,
$ C( K1, L1 ), LDC, SCALOC, IINFO )
INFO = MAX( INFO, IINFO )
*
IF ( SCALOC * SWORK( K, L ) .EQ. ZERO ) THEN
IF( SCALOC .EQ. ZERO ) THEN
* The magnitude of the largest entry of X(K1:K2-1, L1:L2-1)
* is larger than the product of BIGNUM**2 and cannot be
* represented in the form (1/SCALE)*X(K1:K2-1, L1:L2-1).
* Mark the computation as pointless.
BUF = ZERO
ELSE
* Use second scaling factor to prevent flushing to zero.
BUF = BUF*2.D0**EXPONENT( SCALOC )
END IF
DO JJ = 1, NBB
DO LL = 1, NBA
* Bound by BIGNUM to not introduce Inf. The value
* is irrelevant; corresponding entries of the
* solution will be flushed in consistency scaling.
SWORK( LL, JJ ) = MIN( BIGNUM,
$ SWORK( LL, JJ ) / 2.D0**EXPONENT( SCALOC ) )
END DO
END DO
END IF
SWORK( K, L ) = SCALOC * SWORK( K, L )
XNRM = DLANGE( 'I', K2-K1, L2-L1, C( K1, L1 ), LDC,
$ WNRM )
*
DO I = K - 1, 1, -1
*
* C( I, L ) := C( I, L ) - A( I, K ) * C( K, L )
*
I1 = IWORK( I )
I2 = IWORK( I + 1 )
*
* Compute scaling factor to survive the linear update
* simulating consistent scaling.
*
CNRM = DLANGE( 'I', I2-I1, L2-L1, C( I1, L1 ),
$ LDC, WNRM )
SCAMIN = MIN( SWORK( I, L ), SWORK( K, L ) )
CNRM = CNRM * ( SCAMIN / SWORK( I, L ) )
XNRM = XNRM * ( SCAMIN / SWORK( K, L ) )
ANRM = SWORK( I, AWRK + K )
SCALOC = DLARMM( ANRM, XNRM, CNRM )
IF( SCALOC * SCAMIN .EQ. ZERO ) THEN
* Use second scaling factor to prevent flushing to zero.
BUF = BUF*2.D0**EXPONENT( SCALOC )
DO JJ = 1, NBB
DO LL = 1, NBA
SWORK( LL, JJ ) = MIN( BIGNUM,
$ SWORK( LL, JJ ) / 2.D0**EXPONENT( SCALOC ) )
END DO
END DO
SCAMIN = SCAMIN / 2.D0**EXPONENT( SCALOC )
SCALOC = SCALOC / 2.D0**EXPONENT( SCALOC )
END IF
CNRM = CNRM * SCALOC
XNRM = XNRM * SCALOC
*
* Simultaneously apply the robust update factor and the
* consistency scaling factor to C( I, L ) and C( K, L ).
*
SCAL = ( SCAMIN / SWORK( K, L ) ) * SCALOC
IF (SCAL .NE. ONE) THEN
DO JJ = L1, L2-1
CALL DSCAL( K2-K1, SCAL, C( K1, JJ ), 1)
END DO
ENDIF
*
SCAL = ( SCAMIN / SWORK( I, L ) ) * SCALOC
IF (SCAL .NE. ONE) THEN
DO LL = L1, L2-1
CALL DSCAL( I2-I1, SCAL, C( I1, LL ), 1)
END DO
ENDIF
*
* Record current scaling factor
*
SWORK( K, L ) = SCAMIN * SCALOC
SWORK( I, L ) = SCAMIN * SCALOC
*
CALL DGEMM( 'N', 'N', I2-I1, L2-L1, K2-K1, -ONE,
$ A( I1, K1 ), LDA, C( K1, L1 ), LDC,
$ ONE, C( I1, L1 ), LDC )
*
END DO
*
DO J = L + 1, NBB
*
* C( K, J ) := C( K, J ) - SGN * C( K, L ) * B( L, J )
*
J1 = IWORK( PC + J )
J2 = IWORK( PC + J + 1 )
*
* Compute scaling factor to survive the linear update
* simulating consistent scaling.
*
CNRM = DLANGE( 'I', K2-K1, J2-J1, C( K1, J1 ),
$ LDC, WNRM )
SCAMIN = MIN( SWORK( K, J ), SWORK( K, L ) )
CNRM = CNRM * ( SCAMIN / SWORK( K, J ) )
XNRM = XNRM * ( SCAMIN / SWORK( K, L ) )
BNRM = SWORK(L, BWRK + J)
SCALOC = DLARMM( BNRM, XNRM, CNRM )
IF( SCALOC * SCAMIN .EQ. ZERO ) THEN
* Use second scaling factor to prevent flushing to zero.
BUF = BUF*2.D0**EXPONENT( SCALOC )
DO JJ = 1, NBB
DO LL = 1, NBA
SWORK( LL, JJ ) = MIN( BIGNUM,
$ SWORK( LL, JJ ) / 2.D0**EXPONENT( SCALOC ) )
END DO
END DO
SCAMIN = SCAMIN / 2.D0**EXPONENT( SCALOC )
SCALOC = SCALOC / 2.D0**EXPONENT( SCALOC )
END IF
CNRM = CNRM * SCALOC
XNRM = XNRM * SCALOC
*
* Simultaneously apply the robust update factor and the
* consistency scaling factor to C( K, J ) and C( K, L).
*
SCAL = ( SCAMIN / SWORK( K, L ) ) * SCALOC
IF( SCAL .NE. ONE ) THEN
DO LL = L1, L2-1
CALL DSCAL( K2-K1, SCAL, C( K1, LL ), 1 )
END DO
ENDIF
*
SCAL = ( SCAMIN / SWORK( K, J ) ) * SCALOC
IF( SCAL .NE. ONE ) THEN
DO JJ = J1, J2-1
CALL DSCAL( K2-K1, SCAL, C( K1, JJ ), 1 )
END DO
ENDIF
*
* Record current scaling factor
*
SWORK( K, L ) = SCAMIN * SCALOC
SWORK( K, J ) = SCAMIN * SCALOC
*
CALL DGEMM( 'N', 'N', K2-K1, J2-J1, L2-L1, -SGN,
$ C( K1, L1 ), LDC, B( L1, J1 ), LDB,
$ ONE, C( K1, J1 ), LDC )
END DO
END DO
END DO
ELSE IF( .NOT.NOTRNA .AND. NOTRNB ) THEN
*
* Solve A**T*X + ISGN*X*B = scale*C.
*
* The (K,L)th block of X is determined starting from
* upper-left corner column by column by
*
* A(K,K)**T*X(K,L) + ISGN*X(K,L)*B(L,L) = C(K,L) - R(K,L)
*
* Where
* K-1 L-1
* R(K,L) = SUM [A(I,K)**T*X(I,L)] +ISGN*SUM [X(K,J)*B(J,L)]
* I=1 J=1
*
* Start loop over block rows (index = K) and block columns (index = L)
*
DO K = 1, NBA
*
* K1: row index of the first row in X( K, L )
* K2: row index of the first row in X( K+1, L )
* so the K2 - K1 is the column count of the block X( K, L )
*
K1 = IWORK( K )
K2 = IWORK( K + 1 )
DO L = 1, NBB
*
* L1: column index of the first column in X( K, L )
* L2: column index of the first column in X( K, L + 1)
* so that L2 - L1 is the row count of the block X( K, L )
*
L1 = IWORK( PC + L )
L2 = IWORK( PC + L + 1 )
*
CALL DTRSYL( TRANA, TRANB, ISGN, K2-K1, L2-L1,
$ A( K1, K1 ), LDA,
$ B( L1, L1 ), LDB,
$ C( K1, L1 ), LDC, SCALOC, IINFO )
INFO = MAX( INFO, IINFO )
*
IF( SCALOC * SWORK( K, L ) .EQ. ZERO ) THEN
IF( SCALOC .EQ. ZERO ) THEN
* The magnitude of the largest entry of X(K1:K2-1, L1:L2-1)
* is larger than the product of BIGNUM**2 and cannot be
* represented in the form (1/SCALE)*X(K1:K2-1, L1:L2-1).
* Mark the computation as pointless.
BUF = ZERO
ELSE
* Use second scaling factor to prevent flushing to zero.
BUF = BUF*2.D0**EXPONENT( SCALOC )
END IF
DO JJ = 1, NBB
DO LL = 1, NBA
* Bound by BIGNUM to not introduce Inf. The value
* is irrelevant; corresponding entries of the
* solution will be flushed in consistency scaling.
SWORK( LL, JJ ) = MIN( BIGNUM,
$ SWORK( LL, JJ ) / 2.D0**EXPONENT( SCALOC ) )
END DO
END DO
END IF
SWORK( K, L ) = SCALOC * SWORK( K, L )
XNRM = DLANGE( 'I', K2-K1, L2-L1, C( K1, L1 ), LDC,
$ WNRM )
*
DO I = K + 1, NBA
*
* C( I, L ) := C( I, L ) - A( K, I )**T * C( K, L )
*
I1 = IWORK( I )
I2 = IWORK( I + 1 )
*
* Compute scaling factor to survive the linear update
* simulating consistent scaling.
*
CNRM = DLANGE( 'I', I2-I1, L2-L1, C( I1, L1 ),
$ LDC, WNRM )
SCAMIN = MIN( SWORK( I, L ), SWORK( K, L ) )
CNRM = CNRM * ( SCAMIN / SWORK( I, L ) )
XNRM = XNRM * ( SCAMIN / SWORK( K, L ) )
ANRM = SWORK( I, AWRK + K )
SCALOC = DLARMM( ANRM, XNRM, CNRM )
IF( SCALOC * SCAMIN .EQ. ZERO ) THEN
* Use second scaling factor to prevent flushing to zero.
BUF = BUF*2.D0**EXPONENT( SCALOC )
DO JJ = 1, NBB
DO LL = 1, NBA
SWORK( LL, JJ ) = MIN( BIGNUM,
$ SWORK( LL, JJ ) / 2.D0**EXPONENT( SCALOC ) )
END DO
END DO
SCAMIN = SCAMIN / 2.D0**EXPONENT( SCALOC )
SCALOC = SCALOC / 2.D0**EXPONENT( SCALOC )
END IF
CNRM = CNRM * SCALOC
XNRM = XNRM * SCALOC
*
* Simultaneously apply the robust update factor and the
* consistency scaling factor to to C( I, L ) and C( K, L ).
*
SCAL = ( SCAMIN / SWORK( K, L ) ) * SCALOC
IF (SCAL .NE. ONE) THEN
DO LL = L1, L2-1
CALL DSCAL( K2-K1, SCAL, C( K1, LL ), 1 )
END DO
ENDIF
*
SCAL = ( SCAMIN / SWORK( I, L ) ) * SCALOC
IF (SCAL .NE. ONE) THEN
DO LL = L1, L2-1
CALL DSCAL( I2-I1, SCAL, C( I1, LL ), 1 )
END DO
ENDIF
*
* Record current scaling factor
*
SWORK( K, L ) = SCAMIN * SCALOC
SWORK( I, L ) = SCAMIN * SCALOC
*
CALL DGEMM( 'T', 'N', I2-I1, L2-L1, K2-K1, -ONE,
$ A( K1, I1 ), LDA, C( K1, L1 ), LDC,
$ ONE, C( I1, L1 ), LDC )
END DO
*
DO J = L + 1, NBB
*
* C( K, J ) := C( K, J ) - SGN * C( K, L ) * B( L, J )
*
J1 = IWORK( PC + J )
J2 = IWORK( PC + J + 1 )
*
* Compute scaling factor to survive the linear update
* simulating consistent scaling.
*
CNRM = DLANGE( 'I', K2-K1, J2-J1, C( K1, J1 ),
$ LDC, WNRM )
SCAMIN = MIN( SWORK( K, J ), SWORK( K, L ) )
CNRM = CNRM * ( SCAMIN / SWORK( K, J ) )
XNRM = XNRM * ( SCAMIN / SWORK( K, L ) )
BNRM = SWORK( L, BWRK + J )
SCALOC = DLARMM( BNRM, XNRM, CNRM )
IF( SCALOC * SCAMIN .EQ. ZERO ) THEN
* Use second scaling factor to prevent flushing to zero.
BUF = BUF*2.D0**EXPONENT( SCALOC )
DO JJ = 1, NBB
DO LL = 1, NBA
SWORK( LL, JJ ) = MIN( BIGNUM,
$ SWORK( LL, JJ ) / 2.D0**EXPONENT( SCALOC ) )
END DO
END DO
SCAMIN = SCAMIN / 2.D0**EXPONENT( SCALOC )
SCALOC = SCALOC / 2.D0**EXPONENT( SCALOC )
END IF
CNRM = CNRM * SCALOC
XNRM = XNRM * SCALOC
*
* Simultaneously apply the robust update factor and the
* consistency scaling factor to to C( K, J ) and C( K, L ).
*
SCAL = ( SCAMIN / SWORK( K, L ) ) * SCALOC
IF( SCAL .NE. ONE ) THEN
DO LL = L1, L2-1
CALL DSCAL( K2-K1, SCAL, C( K1, LL ), 1 )
END DO
ENDIF
*
SCAL = ( SCAMIN / SWORK( K, J ) ) * SCALOC
IF( SCAL .NE. ONE ) THEN
DO JJ = J1, J2-1
CALL DSCAL( K2-K1, SCAL, C( K1, JJ ), 1 )
END DO
ENDIF
*
* Record current scaling factor
*
SWORK( K, L ) = SCAMIN * SCALOC
SWORK( K, J ) = SCAMIN * SCALOC
*
CALL DGEMM( 'N', 'N', K2-K1, J2-J1, L2-L1, -SGN,
$ C( K1, L1 ), LDC, B( L1, J1 ), LDB,
$ ONE, C( K1, J1 ), LDC )
END DO
END DO
END DO
ELSE IF( .NOT.NOTRNA .AND. .NOT.NOTRNB ) THEN
*
* Solve A**T*X + ISGN*X*B**T = scale*C.
*
* The (K,L)th block of X is determined starting from
* top-right corner column by column by
*
* A(K,K)**T*X(K,L) + ISGN*X(K,L)*B(L,L)**T = C(K,L) - R(K,L)
*
* Where
* K-1 N
* R(K,L) = SUM [A(I,K)**T*X(I,L)] + ISGN*SUM [X(K,J)*B(L,J)**T].
* I=1 J=L+1
*
* Start loop over block rows (index = K) and block columns (index = L)
*
DO K = 1, NBA
*
* K1: row index of the first row in X( K, L )
* K2: row index of the first row in X( K+1, L )
* so the K2 - K1 is the column count of the block X( K, L )
*
K1 = IWORK( K )
K2 = IWORK( K + 1 )
DO L = NBB, 1, -1
*
* L1: column index of the first column in X( K, L )
* L2: column index of the first column in X( K, L + 1)
* so that L2 - L1 is the row count of the block X( K, L )
*
L1 = IWORK( PC + L )
L2 = IWORK( PC + L + 1 )
*
CALL DTRSYL( TRANA, TRANB, ISGN, K2-K1, L2-L1,
$ A( K1, K1 ), LDA,
$ B( L1, L1 ), LDB,
$ C( K1, L1 ), LDC, SCALOC, IINFO )
INFO = MAX( INFO, IINFO )
*
SWORK( K, L ) = SCALOC * SWORK( K, L )
IF( SCALOC * SWORK( K, L ) .EQ. ZERO ) THEN
IF( SCALOC .EQ. ZERO ) THEN
* The magnitude of the largest entry of X(K1:K2-1, L1:L2-1)
* is larger than the product of BIGNUM**2 and cannot be
* represented in the form (1/SCALE)*X(K1:K2-1, L1:L2-1).
* Mark the computation as pointless.
BUF = ZERO
ELSE
* Use second scaling factor to prevent flushing to zero.
BUF = BUF*2.D0**EXPONENT( SCALOC )
END IF
DO JJ = 1, NBB
DO LL = 1, NBA
* Bound by BIGNUM to not introduce Inf. The value
* is irrelevant; corresponding entries of the
* solution will be flushed in consistency scaling.
SWORK( LL, JJ ) = MIN( BIGNUM,
$ SWORK( LL, JJ ) / 2.D0**EXPONENT( SCALOC ) )
END DO
END DO
END IF
XNRM = DLANGE( 'I', K2-K1, L2-L1, C( K1, L1 ), LDC,
$ WNRM )
*
DO I = K + 1, NBA
*
* C( I, L ) := C( I, L ) - A( K, I )**T * C( K, L )
*
I1 = IWORK( I )
I2 = IWORK( I + 1 )
*
* Compute scaling factor to survive the linear update
* simulating consistent scaling.
*
CNRM = DLANGE( 'I', I2-I1, L2-L1, C( I1, L1 ),
$ LDC, WNRM )
SCAMIN = MIN( SWORK( I, L ), SWORK( K, L ) )
CNRM = CNRM * ( SCAMIN / SWORK( I, L ) )
XNRM = XNRM * ( SCAMIN / SWORK( K, L ) )
ANRM = SWORK( I, AWRK + K )
SCALOC = DLARMM( ANRM, XNRM, CNRM )
IF( SCALOC * SCAMIN .EQ. ZERO ) THEN
* Use second scaling factor to prevent flushing to zero.
BUF = BUF*2.D0**EXPONENT( SCALOC )
DO JJ = 1, NBB
DO LL = 1, NBA
SWORK( LL, JJ ) = MIN( BIGNUM,
$ SWORK( LL, JJ ) / 2.D0**EXPONENT( SCALOC ) )
END DO
END DO
SCAMIN = SCAMIN / 2.D0**EXPONENT( SCALOC )
SCALOC = SCALOC / 2.D0**EXPONENT( SCALOC )
END IF
CNRM = CNRM * SCALOC
XNRM = XNRM * SCALOC
*
* Simultaneously apply the robust update factor and the
* consistency scaling factor to C( I, L ) and C( K, L ).
*
SCAL = ( SCAMIN / SWORK( K, L ) ) * SCALOC
IF (SCAL .NE. ONE) THEN
DO LL = L1, L2-1
CALL DSCAL( K2-K1, SCAL, C( K1, LL ), 1 )
END DO
ENDIF
*
SCAL = ( SCAMIN / SWORK( I, L ) ) * SCALOC
IF (SCAL .NE. ONE) THEN
DO LL = L1, L2-1
CALL DSCAL( I2-I1, SCAL, C( I1, LL ), 1 )
END DO
ENDIF
*
* Record current scaling factor
*
SWORK( K, L ) = SCAMIN * SCALOC
SWORK( I, L ) = SCAMIN * SCALOC
*
CALL DGEMM( 'T', 'N', I2-I1, L2-L1, K2-K1, -ONE,
$ A( K1, I1 ), LDA, C( K1, L1 ), LDC,
$ ONE, C( I1, L1 ), LDC )
END DO
*
DO J = 1, L - 1
*
* C( K, J ) := C( K, J ) - SGN * C( K, L ) * B( J, L )**T
*
J1 = IWORK( PC + J )
J2 = IWORK( PC + J + 1 )
*
* Compute scaling factor to survive the linear update
* simulating consistent scaling.
*
CNRM = DLANGE( 'I', K2-K1, J2-J1, C( K1, J1 ),
$ LDC, WNRM )
SCAMIN = MIN( SWORK( K, J ), SWORK( K, L ) )
CNRM = CNRM * ( SCAMIN / SWORK( K, J ) )
XNRM = XNRM * ( SCAMIN / SWORK( K, L ) )
BNRM = SWORK( L, BWRK + J )
SCALOC = DLARMM( BNRM, XNRM, CNRM )
IF( SCALOC * SCAMIN .EQ. ZERO ) THEN
* Use second scaling factor to prevent flushing to zero.
BUF = BUF*2.D0**EXPONENT( SCALOC )
DO JJ = 1, NBB
DO LL = 1, NBA
SWORK( LL, JJ ) = MIN( BIGNUM,
$ SWORK( LL, JJ ) / 2.D0**EXPONENT( SCALOC ) )
END DO
END DO
SCAMIN = SCAMIN / 2.D0**EXPONENT( SCALOC )
SCALOC = SCALOC / 2.D0**EXPONENT( SCALOC )
END IF
CNRM = CNRM * SCALOC
XNRM = XNRM * SCALOC
*
* Simultaneously apply the robust update factor and the
* consistency scaling factor to C( K, J ) and C( K, L ).
*
SCAL = ( SCAMIN / SWORK( K, L ) ) * SCALOC
IF( SCAL .NE. ONE ) THEN
DO LL = L1, L2-1
CALL DSCAL( K2-K1, SCAL, C( K1, LL ), 1)
END DO
ENDIF
*
SCAL = ( SCAMIN / SWORK( K, J ) ) * SCALOC
IF( SCAL .NE. ONE ) THEN
DO JJ = J1, J2-1
CALL DSCAL( K2-K1, SCAL, C( K1, JJ ), 1 )
END DO
ENDIF
*
* Record current scaling factor
*
SWORK( K, L ) = SCAMIN * SCALOC
SWORK( K, J ) = SCAMIN * SCALOC
*
CALL DGEMM( 'N', 'T', K2-K1, J2-J1, L2-L1, -SGN,
$ C( K1, L1 ), LDC, B( J1, L1 ), LDB,
$ ONE, C( K1, J1 ), LDC )
END DO
END DO
END DO
ELSE IF( NOTRNA .AND. .NOT.NOTRNB ) THEN
*
* Solve A*X + ISGN*X*B**T = scale*C.
*
* The (K,L)th block of X is determined starting from
* bottom-right corner column by column by
*
* A(K,K)*X(K,L) + ISGN*X(K,L)*B(L,L)**T = C(K,L) - R(K,L)
*
* Where
* M N
* R(K,L) = SUM [A(K,I)*X(I,L)] + ISGN*SUM [X(K,J)*B(L,J)**T].
* I=K+1 J=L+1
*
* Start loop over block rows (index = K) and block columns (index = L)
*
DO K = NBA, 1, -1
*
* K1: row index of the first row in X( K, L )
* K2: row index of the first row in X( K+1, L )
* so the K2 - K1 is the column count of the block X( K, L )
*
K1 = IWORK( K )
K2 = IWORK( K + 1 )
DO L = NBB, 1, -1
*
* L1: column index of the first column in X( K, L )
* L2: column index of the first column in X( K, L + 1)
* so that L2 - L1 is the row count of the block X( K, L )
*
L1 = IWORK( PC + L )
L2 = IWORK( PC + L + 1 )
*
CALL DTRSYL( TRANA, TRANB, ISGN, K2-K1, L2-L1,
$ A( K1, K1 ), LDA,
$ B( L1, L1 ), LDB,
$ C( K1, L1 ), LDC, SCALOC, IINFO )
INFO = MAX( INFO, IINFO )
*
IF( SCALOC * SWORK( K, L ) .EQ. ZERO ) THEN
IF( SCALOC .EQ. ZERO ) THEN
* The magnitude of the largest entry of X(K1:K2-1, L1:L2-1)
* is larger than the product of BIGNUM**2 and cannot be
* represented in the form (1/SCALE)*X(K1:K2-1, L1:L2-1).
* Mark the computation as pointless.
BUF = ZERO
ELSE
* Use second scaling factor to prevent flushing to zero.
BUF = BUF*2.D0**EXPONENT( SCALOC )
END IF
DO JJ = 1, NBB
DO LL = 1, NBA
* Bound by BIGNUM to not introduce Inf. The value
* is irrelevant; corresponding entries of the
* solution will be flushed in consistency scaling.
SWORK( LL, JJ ) = MIN( BIGNUM,
$ SWORK( LL, JJ ) / 2.D0**EXPONENT( SCALOC ) )
END DO
END DO
END IF
SWORK( K, L ) = SCALOC * SWORK( K, L )
XNRM = DLANGE( 'I', K2-K1, L2-L1, C( K1, L1 ), LDC,
$ WNRM )
*
DO I = 1, K - 1
*
* C( I, L ) := C( I, L ) - A( I, K ) * C( K, L )
*
I1 = IWORK( I )
I2 = IWORK( I + 1 )
*
* Compute scaling factor to survive the linear update
* simulating consistent scaling.
*
CNRM = DLANGE( 'I', I2-I1, L2-L1, C( I1, L1 ),
$ LDC, WNRM )
SCAMIN = MIN( SWORK( I, L ), SWORK( K, L ) )
CNRM = CNRM * ( SCAMIN / SWORK( I, L ) )
XNRM = XNRM * ( SCAMIN / SWORK( K, L ) )
ANRM = SWORK( I, AWRK + K )
SCALOC = DLARMM( ANRM, XNRM, CNRM )
IF( SCALOC * SCAMIN .EQ. ZERO ) THEN
* Use second scaling factor to prevent flushing to zero.
BUF = BUF*2.D0**EXPONENT( SCALOC )
DO JJ = 1, NBB
DO LL = 1, NBA
SWORK( LL, JJ ) = MIN( BIGNUM,
$ SWORK( LL, JJ ) / 2.D0**EXPONENT( SCALOC ) )
END DO
END DO
SCAMIN = SCAMIN / 2.D0**EXPONENT( SCALOC )
SCALOC = SCALOC / 2.D0**EXPONENT( SCALOC )
END IF
CNRM = CNRM * SCALOC
XNRM = XNRM * SCALOC
*
* Simultaneously apply the robust update factor and the
* consistency scaling factor to C( I, L ) and C( K, L ).
*
SCAL = ( SCAMIN / SWORK( K, L ) ) * SCALOC
IF (SCAL .NE. ONE) THEN
DO LL = L1, L2-1
CALL DSCAL( K2-K1, SCAL, C( K1, LL ), 1 )
END DO
ENDIF
*
SCAL = ( SCAMIN / SWORK( I, L ) ) * SCALOC
IF (SCAL .NE. ONE) THEN
DO LL = L1, L2-1
CALL DSCAL( I2-I1, SCAL, C( I1, LL ), 1 )
END DO
ENDIF
*
* Record current scaling factor
*
SWORK( K, L ) = SCAMIN * SCALOC
SWORK( I, L ) = SCAMIN * SCALOC
*
CALL DGEMM( 'N', 'N', I2-I1, L2-L1, K2-K1, -ONE,
$ A( I1, K1 ), LDA, C( K1, L1 ), LDC,
$ ONE, C( I1, L1 ), LDC )
*
END DO
*
DO J = 1, L - 1
*
* C( K, J ) := C( K, J ) - SGN * C( K, L ) * B( J, L )**T
*
J1 = IWORK( PC + J )
J2 = IWORK( PC + J + 1 )
*
* Compute scaling factor to survive the linear update
* simulating consistent scaling.
*
CNRM = DLANGE( 'I', K2-K1, J2-J1, C( K1, J1 ),
$ LDC, WNRM )
SCAMIN = MIN( SWORK( K, J ), SWORK( K, L ) )
CNRM = CNRM * ( SCAMIN / SWORK( K, J ) )
XNRM = XNRM * ( SCAMIN / SWORK( K, L ) )
BNRM = SWORK( L, BWRK + J )
SCALOC = DLARMM( BNRM, XNRM, CNRM )
IF( SCALOC * SCAMIN .EQ. ZERO ) THEN
* Use second scaling factor to prevent flushing to zero.
BUF = BUF*2.D0**EXPONENT( SCALOC )
DO JJ = 1, NBB
DO LL = 1, NBA
SWORK( LL, JJ ) = MIN( BIGNUM,
$ SWORK( LL, JJ ) / 2.D0**EXPONENT( SCALOC ) )
END DO
END DO
SCAMIN = SCAMIN / 2.D0**EXPONENT( SCALOC )
SCALOC = SCALOC / 2.D0**EXPONENT( SCALOC )
END IF
CNRM = CNRM * SCALOC
XNRM = XNRM * SCALOC
*
* Simultaneously apply the robust update factor and the
* consistency scaling factor to C( K, J ) and C( K, L ).
*
SCAL = ( SCAMIN / SWORK( K, L ) ) * SCALOC
IF( SCAL .NE. ONE ) THEN
DO JJ = L1, L2-1
CALL DSCAL( K2-K1, SCAL, C( K1, JJ ), 1 )
END DO
ENDIF
*
SCAL = ( SCAMIN / SWORK( K, J ) ) * SCALOC
IF( SCAL .NE. ONE ) THEN
DO JJ = J1, J2-1
CALL DSCAL( K2-K1, SCAL, C( K1, JJ ), 1 )
END DO
ENDIF
*
* Record current scaling factor
*
SWORK( K, L ) = SCAMIN * SCALOC
SWORK( K, J ) = SCAMIN * SCALOC
*
CALL DGEMM( 'N', 'T', K2-K1, J2-J1, L2-L1, -SGN,
$ C( K1, L1 ), LDC, B( J1, L1 ), LDB,
$ ONE, C( K1, J1 ), LDC )
END DO
END DO
END DO
*
END IF
*
* Reduce local scaling factors
*
SCALE = SWORK( 1, 1 )
DO K = 1, NBA
DO L = 1, NBB
SCALE = MIN( SCALE, SWORK( K, L ) )
END DO
END DO
*
IF( SCALE .EQ. ZERO ) THEN
*
* The magnitude of the largest entry of the solution is larger
* than the product of BIGNUM**2 and cannot be represented in the
* form (1/SCALE)*X if SCALE is DOUBLE PRECISION. Set SCALE to
* zero and give up.
*
IWORK(1) = NBA + NBB + 2
SWORK(1,1) = MAX( NBA, NBB )
SWORK(2,1) = 2 * NBB + NBA
RETURN
END IF
*
* Realize consistent scaling
*
DO K = 1, NBA
K1 = IWORK( K )
K2 = IWORK( K + 1 )
DO L = 1, NBB
L1 = IWORK( PC + L )
L2 = IWORK( PC + L + 1 )
SCAL = SCALE / SWORK( K, L )
IF( SCAL .NE. ONE ) THEN
DO LL = L1, L2-1
CALL DSCAL( K2-K1, SCAL, C( K1, LL ), 1 )
END DO
ENDIF
END DO
END DO
*
IF( BUF .NE. ONE .AND. BUF.GT.ZERO ) THEN
*
* Decrease SCALE as much as possible.
*
SCALOC = MIN( SCALE / SMLNUM, ONE / BUF )
BUF = BUF * SCALOC
SCALE = SCALE / SCALOC
END IF
IF( BUF.NE.ONE .AND. BUF.GT.ZERO ) THEN
*
* In case of overly aggressive scaling during the computation,
* flushing of the global scale factor may be prevented by
* undoing some of the scaling. This step is to ensure that
* this routine flushes only scale factors that TRSYL also
* flushes and be usable as a drop-in replacement.
*
* How much can the normwise largest entry be upscaled?
*
SCAL = C( 1, 1 )
DO K = 1, M
DO L = 1, N
SCAL = MAX( SCAL, ABS( C( K, L ) ) )
END DO
END DO
*
* Increase BUF as close to 1 as possible and apply scaling.
*
SCALOC = MIN( BIGNUM / SCAL, ONE / BUF )
BUF = BUF * SCALOC
CALL DLASCL( 'G', -1, -1, ONE, SCALOC, M, N, C, LDC, IWORK )
END IF
*
* Combine with buffer scaling factor. SCALE will be flushed if
* BUF is less than one here.
*
SCALE = SCALE * BUF
*
* Restore workspace dimensions
*
IWORK(1) = NBA + NBB + 2
SWORK(1,1) = MAX( NBA, NBB )
SWORK(2,1) = 2 * NBB + NBA
*
RETURN
*
* End of DTRSYL3
*
END