You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1079 lines
38 KiB
1079 lines
38 KiB
2 years ago
|
*> \brief \b SBBCSD
|
||
|
*
|
||
|
* =========== DOCUMENTATION ===========
|
||
|
*
|
||
|
* Online html documentation available at
|
||
|
* http://www.netlib.org/lapack/explore-html/
|
||
|
*
|
||
|
*> \htmlonly
|
||
|
*> Download SBBCSD + dependencies
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sbbcsd.f">
|
||
|
*> [TGZ]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sbbcsd.f">
|
||
|
*> [ZIP]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sbbcsd.f">
|
||
|
*> [TXT]</a>
|
||
|
*> \endhtmlonly
|
||
|
*
|
||
|
* Definition:
|
||
|
* ===========
|
||
|
*
|
||
|
* SUBROUTINE SBBCSD( JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS, M, P, Q,
|
||
|
* THETA, PHI, U1, LDU1, U2, LDU2, V1T, LDV1T,
|
||
|
* V2T, LDV2T, B11D, B11E, B12D, B12E, B21D, B21E,
|
||
|
* B22D, B22E, WORK, LWORK, INFO )
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
* CHARACTER JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS
|
||
|
* INTEGER INFO, LDU1, LDU2, LDV1T, LDV2T, LWORK, M, P, Q
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
* REAL B11D( * ), B11E( * ), B12D( * ), B12E( * ),
|
||
|
* $ B21D( * ), B21E( * ), B22D( * ), B22E( * ),
|
||
|
* $ PHI( * ), THETA( * ), WORK( * )
|
||
|
* REAL U1( LDU1, * ), U2( LDU2, * ), V1T( LDV1T, * ),
|
||
|
* $ V2T( LDV2T, * )
|
||
|
* ..
|
||
|
*
|
||
|
*
|
||
|
*> \par Purpose:
|
||
|
* =============
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*> SBBCSD computes the CS decomposition of an orthogonal matrix in
|
||
|
*> bidiagonal-block form,
|
||
|
*>
|
||
|
*>
|
||
|
*> [ B11 | B12 0 0 ]
|
||
|
*> [ 0 | 0 -I 0 ]
|
||
|
*> X = [----------------]
|
||
|
*> [ B21 | B22 0 0 ]
|
||
|
*> [ 0 | 0 0 I ]
|
||
|
*>
|
||
|
*> [ C | -S 0 0 ]
|
||
|
*> [ U1 | ] [ 0 | 0 -I 0 ] [ V1 | ]**T
|
||
|
*> = [---------] [---------------] [---------] .
|
||
|
*> [ | U2 ] [ S | C 0 0 ] [ | V2 ]
|
||
|
*> [ 0 | 0 0 I ]
|
||
|
*>
|
||
|
*> X is M-by-M, its top-left block is P-by-Q, and Q must be no larger
|
||
|
*> than P, M-P, or M-Q. (If Q is not the smallest index, then X must be
|
||
|
*> transposed and/or permuted. This can be done in constant time using
|
||
|
*> the TRANS and SIGNS options. See SORCSD for details.)
|
||
|
*>
|
||
|
*> The bidiagonal matrices B11, B12, B21, and B22 are represented
|
||
|
*> implicitly by angles THETA(1:Q) and PHI(1:Q-1).
|
||
|
*>
|
||
|
*> The orthogonal matrices U1, U2, V1T, and V2T are input/output.
|
||
|
*> The input matrices are pre- or post-multiplied by the appropriate
|
||
|
*> singular vector matrices.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Arguments:
|
||
|
* ==========
|
||
|
*
|
||
|
*> \param[in] JOBU1
|
||
|
*> \verbatim
|
||
|
*> JOBU1 is CHARACTER
|
||
|
*> = 'Y': U1 is updated;
|
||
|
*> otherwise: U1 is not updated.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] JOBU2
|
||
|
*> \verbatim
|
||
|
*> JOBU2 is CHARACTER
|
||
|
*> = 'Y': U2 is updated;
|
||
|
*> otherwise: U2 is not updated.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] JOBV1T
|
||
|
*> \verbatim
|
||
|
*> JOBV1T is CHARACTER
|
||
|
*> = 'Y': V1T is updated;
|
||
|
*> otherwise: V1T is not updated.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] JOBV2T
|
||
|
*> \verbatim
|
||
|
*> JOBV2T is CHARACTER
|
||
|
*> = 'Y': V2T is updated;
|
||
|
*> otherwise: V2T is not updated.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] TRANS
|
||
|
*> \verbatim
|
||
|
*> TRANS is CHARACTER
|
||
|
*> = 'T': X, U1, U2, V1T, and V2T are stored in row-major
|
||
|
*> order;
|
||
|
*> otherwise: X, U1, U2, V1T, and V2T are stored in column-
|
||
|
*> major order.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] M
|
||
|
*> \verbatim
|
||
|
*> M is INTEGER
|
||
|
*> The number of rows and columns in X, the orthogonal matrix in
|
||
|
*> bidiagonal-block form.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] P
|
||
|
*> \verbatim
|
||
|
*> P is INTEGER
|
||
|
*> The number of rows in the top-left block of X. 0 <= P <= M.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] Q
|
||
|
*> \verbatim
|
||
|
*> Q is INTEGER
|
||
|
*> The number of columns in the top-left block of X.
|
||
|
*> 0 <= Q <= MIN(P,M-P,M-Q).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] THETA
|
||
|
*> \verbatim
|
||
|
*> THETA is REAL array, dimension (Q)
|
||
|
*> On entry, the angles THETA(1),...,THETA(Q) that, along with
|
||
|
*> PHI(1), ...,PHI(Q-1), define the matrix in bidiagonal-block
|
||
|
*> form. On exit, the angles whose cosines and sines define the
|
||
|
*> diagonal blocks in the CS decomposition.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] PHI
|
||
|
*> \verbatim
|
||
|
*> PHI is REAL array, dimension (Q-1)
|
||
|
*> The angles PHI(1),...,PHI(Q-1) that, along with THETA(1),...,
|
||
|
*> THETA(Q), define the matrix in bidiagonal-block form.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] U1
|
||
|
*> \verbatim
|
||
|
*> U1 is REAL array, dimension (LDU1,P)
|
||
|
*> On entry, a P-by-P matrix. On exit, U1 is postmultiplied
|
||
|
*> by the left singular vector matrix common to [ B11 ; 0 ] and
|
||
|
*> [ B12 0 0 ; 0 -I 0 0 ].
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDU1
|
||
|
*> \verbatim
|
||
|
*> LDU1 is INTEGER
|
||
|
*> The leading dimension of the array U1, LDU1 >= MAX(1,P).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] U2
|
||
|
*> \verbatim
|
||
|
*> U2 is REAL array, dimension (LDU2,M-P)
|
||
|
*> On entry, an (M-P)-by-(M-P) matrix. On exit, U2 is
|
||
|
*> postmultiplied by the left singular vector matrix common to
|
||
|
*> [ B21 ; 0 ] and [ B22 0 0 ; 0 0 I ].
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDU2
|
||
|
*> \verbatim
|
||
|
*> LDU2 is INTEGER
|
||
|
*> The leading dimension of the array U2, LDU2 >= MAX(1,M-P).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] V1T
|
||
|
*> \verbatim
|
||
|
*> V1T is REAL array, dimension (LDV1T,Q)
|
||
|
*> On entry, a Q-by-Q matrix. On exit, V1T is premultiplied
|
||
|
*> by the transpose of the right singular vector
|
||
|
*> matrix common to [ B11 ; 0 ] and [ B21 ; 0 ].
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDV1T
|
||
|
*> \verbatim
|
||
|
*> LDV1T is INTEGER
|
||
|
*> The leading dimension of the array V1T, LDV1T >= MAX(1,Q).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] V2T
|
||
|
*> \verbatim
|
||
|
*> V2T is REAL array, dimension (LDV2T,M-Q)
|
||
|
*> On entry, an (M-Q)-by-(M-Q) matrix. On exit, V2T is
|
||
|
*> premultiplied by the transpose of the right
|
||
|
*> singular vector matrix common to [ B12 0 0 ; 0 -I 0 ] and
|
||
|
*> [ B22 0 0 ; 0 0 I ].
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDV2T
|
||
|
*> \verbatim
|
||
|
*> LDV2T is INTEGER
|
||
|
*> The leading dimension of the array V2T, LDV2T >= MAX(1,M-Q).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] B11D
|
||
|
*> \verbatim
|
||
|
*> B11D is REAL array, dimension (Q)
|
||
|
*> When SBBCSD converges, B11D contains the cosines of THETA(1),
|
||
|
*> ..., THETA(Q). If SBBCSD fails to converge, then B11D
|
||
|
*> contains the diagonal of the partially reduced top-left
|
||
|
*> block.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] B11E
|
||
|
*> \verbatim
|
||
|
*> B11E is REAL array, dimension (Q-1)
|
||
|
*> When SBBCSD converges, B11E contains zeros. If SBBCSD fails
|
||
|
*> to converge, then B11E contains the superdiagonal of the
|
||
|
*> partially reduced top-left block.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] B12D
|
||
|
*> \verbatim
|
||
|
*> B12D is REAL array, dimension (Q)
|
||
|
*> When SBBCSD converges, B12D contains the negative sines of
|
||
|
*> THETA(1), ..., THETA(Q). If SBBCSD fails to converge, then
|
||
|
*> B12D contains the diagonal of the partially reduced top-right
|
||
|
*> block.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] B12E
|
||
|
*> \verbatim
|
||
|
*> B12E is REAL array, dimension (Q-1)
|
||
|
*> When SBBCSD converges, B12E contains zeros. If SBBCSD fails
|
||
|
*> to converge, then B12E contains the subdiagonal of the
|
||
|
*> partially reduced top-right block.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] B21D
|
||
|
*> \verbatim
|
||
|
*> B21D is REAL array, dimension (Q)
|
||
|
*> When SBBCSD converges, B21D contains the negative sines of
|
||
|
*> THETA(1), ..., THETA(Q). If SBBCSD fails to converge, then
|
||
|
*> B21D contains the diagonal of the partially reduced bottom-left
|
||
|
*> block.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] B21E
|
||
|
*> \verbatim
|
||
|
*> B21E is REAL array, dimension (Q-1)
|
||
|
*> When SBBCSD converges, B21E contains zeros. If SBBCSD fails
|
||
|
*> to converge, then B21E contains the subdiagonal of the
|
||
|
*> partially reduced bottom-left block.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] B22D
|
||
|
*> \verbatim
|
||
|
*> B22D is REAL array, dimension (Q)
|
||
|
*> When SBBCSD converges, B22D contains the negative sines of
|
||
|
*> THETA(1), ..., THETA(Q). If SBBCSD fails to converge, then
|
||
|
*> B22D contains the diagonal of the partially reduced bottom-right
|
||
|
*> block.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] B22E
|
||
|
*> \verbatim
|
||
|
*> B22E is REAL array, dimension (Q-1)
|
||
|
*> When SBBCSD converges, B22E contains zeros. If SBBCSD fails
|
||
|
*> to converge, then B22E contains the subdiagonal of the
|
||
|
*> partially reduced bottom-right block.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] WORK
|
||
|
*> \verbatim
|
||
|
*> WORK is REAL array, dimension (MAX(1,LWORK))
|
||
|
*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LWORK
|
||
|
*> \verbatim
|
||
|
*> LWORK is INTEGER
|
||
|
*> The dimension of the array WORK. LWORK >= MAX(1,8*Q).
|
||
|
*>
|
||
|
*> If LWORK = -1, then a workspace query is assumed; the
|
||
|
*> routine only calculates the optimal size of the WORK array,
|
||
|
*> returns this value as the first entry of the work array, and
|
||
|
*> no error message related to LWORK is issued by XERBLA.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] INFO
|
||
|
*> \verbatim
|
||
|
*> INFO is INTEGER
|
||
|
*> = 0: successful exit.
|
||
|
*> < 0: if INFO = -i, the i-th argument had an illegal value.
|
||
|
*> > 0: if SBBCSD did not converge, INFO specifies the number
|
||
|
*> of nonzero entries in PHI, and B11D, B11E, etc.,
|
||
|
*> contain the partially reduced matrix.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
*> \par Internal Parameters:
|
||
|
* =========================
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*> TOLMUL REAL, default = MAX(10,MIN(100,EPS**(-1/8)))
|
||
|
*> TOLMUL controls the convergence criterion of the QR loop.
|
||
|
*> Angles THETA(i), PHI(i) are rounded to 0 or PI/2 when they
|
||
|
*> are within TOLMUL*EPS of either bound.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
*> \par References:
|
||
|
* ================
|
||
|
*>
|
||
|
*> [1] Brian D. Sutton. Computing the complete CS decomposition. Numer.
|
||
|
*> Algorithms, 50(1):33-65, 2009.
|
||
|
*
|
||
|
* Authors:
|
||
|
* ========
|
||
|
*
|
||
|
*> \author Univ. of Tennessee
|
||
|
*> \author Univ. of California Berkeley
|
||
|
*> \author Univ. of Colorado Denver
|
||
|
*> \author NAG Ltd.
|
||
|
*
|
||
|
*> \ingroup realOTHERcomputational
|
||
|
*
|
||
|
* =====================================================================
|
||
|
SUBROUTINE SBBCSD( JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS, M, P, Q,
|
||
|
$ THETA, PHI, U1, LDU1, U2, LDU2, V1T, LDV1T,
|
||
|
$ V2T, LDV2T, B11D, B11E, B12D, B12E, B21D, B21E,
|
||
|
$ B22D, B22E, WORK, LWORK, INFO )
|
||
|
*
|
||
|
* -- LAPACK computational routine --
|
||
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
CHARACTER JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS
|
||
|
INTEGER INFO, LDU1, LDU2, LDV1T, LDV2T, LWORK, M, P, Q
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
REAL B11D( * ), B11E( * ), B12D( * ), B12E( * ),
|
||
|
$ B21D( * ), B21E( * ), B22D( * ), B22E( * ),
|
||
|
$ PHI( * ), THETA( * ), WORK( * )
|
||
|
REAL U1( LDU1, * ), U2( LDU2, * ), V1T( LDV1T, * ),
|
||
|
$ V2T( LDV2T, * )
|
||
|
* ..
|
||
|
*
|
||
|
* ===================================================================
|
||
|
*
|
||
|
* .. Parameters ..
|
||
|
INTEGER MAXITR
|
||
|
PARAMETER ( MAXITR = 6 )
|
||
|
REAL HUNDRED, MEIGHTH, ONE, TEN, ZERO
|
||
|
PARAMETER ( HUNDRED = 100.0E0, MEIGHTH = -0.125E0,
|
||
|
$ ONE = 1.0E0, TEN = 10.0E0, ZERO = 0.0E0 )
|
||
|
REAL NEGONE
|
||
|
PARAMETER ( NEGONE = -1.0E0 )
|
||
|
REAL PIOVER2
|
||
|
PARAMETER ( PIOVER2 = 1.57079632679489661923132169163975144210E0 )
|
||
|
* ..
|
||
|
* .. Local Scalars ..
|
||
|
LOGICAL COLMAJOR, LQUERY, RESTART11, RESTART12,
|
||
|
$ RESTART21, RESTART22, WANTU1, WANTU2, WANTV1T,
|
||
|
$ WANTV2T
|
||
|
INTEGER I, IMIN, IMAX, ITER, IU1CS, IU1SN, IU2CS,
|
||
|
$ IU2SN, IV1TCS, IV1TSN, IV2TCS, IV2TSN, J,
|
||
|
$ LWORKMIN, LWORKOPT, MAXIT, MINI
|
||
|
REAL B11BULGE, B12BULGE, B21BULGE, B22BULGE, DUMMY,
|
||
|
$ EPS, MU, NU, R, SIGMA11, SIGMA21,
|
||
|
$ TEMP, THETAMAX, THETAMIN, THRESH, TOL, TOLMUL,
|
||
|
$ UNFL, X1, X2, Y1, Y2
|
||
|
*
|
||
|
* .. External Subroutines ..
|
||
|
EXTERNAL SLASR, SSCAL, SSWAP, SLARTGP, SLARTGS, SLAS2,
|
||
|
$ XERBLA
|
||
|
* ..
|
||
|
* .. External Functions ..
|
||
|
REAL SLAMCH
|
||
|
LOGICAL LSAME
|
||
|
EXTERNAL LSAME, SLAMCH
|
||
|
* ..
|
||
|
* .. Intrinsic Functions ..
|
||
|
INTRINSIC ABS, ATAN2, COS, MAX, MIN, SIN, SQRT
|
||
|
* ..
|
||
|
* .. Executable Statements ..
|
||
|
*
|
||
|
* Test input arguments
|
||
|
*
|
||
|
INFO = 0
|
||
|
LQUERY = LWORK .EQ. -1
|
||
|
WANTU1 = LSAME( JOBU1, 'Y' )
|
||
|
WANTU2 = LSAME( JOBU2, 'Y' )
|
||
|
WANTV1T = LSAME( JOBV1T, 'Y' )
|
||
|
WANTV2T = LSAME( JOBV2T, 'Y' )
|
||
|
COLMAJOR = .NOT. LSAME( TRANS, 'T' )
|
||
|
*
|
||
|
IF( M .LT. 0 ) THEN
|
||
|
INFO = -6
|
||
|
ELSE IF( P .LT. 0 .OR. P .GT. M ) THEN
|
||
|
INFO = -7
|
||
|
ELSE IF( Q .LT. 0 .OR. Q .GT. M ) THEN
|
||
|
INFO = -8
|
||
|
ELSE IF( Q .GT. P .OR. Q .GT. M-P .OR. Q .GT. M-Q ) THEN
|
||
|
INFO = -8
|
||
|
ELSE IF( WANTU1 .AND. LDU1 .LT. P ) THEN
|
||
|
INFO = -12
|
||
|
ELSE IF( WANTU2 .AND. LDU2 .LT. M-P ) THEN
|
||
|
INFO = -14
|
||
|
ELSE IF( WANTV1T .AND. LDV1T .LT. Q ) THEN
|
||
|
INFO = -16
|
||
|
ELSE IF( WANTV2T .AND. LDV2T .LT. M-Q ) THEN
|
||
|
INFO = -18
|
||
|
END IF
|
||
|
*
|
||
|
* Quick return if Q = 0
|
||
|
*
|
||
|
IF( INFO .EQ. 0 .AND. Q .EQ. 0 ) THEN
|
||
|
LWORKMIN = 1
|
||
|
WORK(1) = LWORKMIN
|
||
|
RETURN
|
||
|
END IF
|
||
|
*
|
||
|
* Compute workspace
|
||
|
*
|
||
|
IF( INFO .EQ. 0 ) THEN
|
||
|
IU1CS = 1
|
||
|
IU1SN = IU1CS + Q
|
||
|
IU2CS = IU1SN + Q
|
||
|
IU2SN = IU2CS + Q
|
||
|
IV1TCS = IU2SN + Q
|
||
|
IV1TSN = IV1TCS + Q
|
||
|
IV2TCS = IV1TSN + Q
|
||
|
IV2TSN = IV2TCS + Q
|
||
|
LWORKOPT = IV2TSN + Q - 1
|
||
|
LWORKMIN = LWORKOPT
|
||
|
WORK(1) = LWORKOPT
|
||
|
IF( LWORK .LT. LWORKMIN .AND. .NOT. LQUERY ) THEN
|
||
|
INFO = -28
|
||
|
END IF
|
||
|
END IF
|
||
|
*
|
||
|
IF( INFO .NE. 0 ) THEN
|
||
|
CALL XERBLA( 'SBBCSD', -INFO )
|
||
|
RETURN
|
||
|
ELSE IF( LQUERY ) THEN
|
||
|
RETURN
|
||
|
END IF
|
||
|
*
|
||
|
* Get machine constants
|
||
|
*
|
||
|
EPS = SLAMCH( 'Epsilon' )
|
||
|
UNFL = SLAMCH( 'Safe minimum' )
|
||
|
TOLMUL = MAX( TEN, MIN( HUNDRED, EPS**MEIGHTH ) )
|
||
|
TOL = TOLMUL*EPS
|
||
|
THRESH = MAX( TOL, MAXITR*Q*Q*UNFL )
|
||
|
*
|
||
|
* Test for negligible sines or cosines
|
||
|
*
|
||
|
DO I = 1, Q
|
||
|
IF( THETA(I) .LT. THRESH ) THEN
|
||
|
THETA(I) = ZERO
|
||
|
ELSE IF( THETA(I) .GT. PIOVER2-THRESH ) THEN
|
||
|
THETA(I) = PIOVER2
|
||
|
END IF
|
||
|
END DO
|
||
|
DO I = 1, Q-1
|
||
|
IF( PHI(I) .LT. THRESH ) THEN
|
||
|
PHI(I) = ZERO
|
||
|
ELSE IF( PHI(I) .GT. PIOVER2-THRESH ) THEN
|
||
|
PHI(I) = PIOVER2
|
||
|
END IF
|
||
|
END DO
|
||
|
*
|
||
|
* Initial deflation
|
||
|
*
|
||
|
IMAX = Q
|
||
|
DO WHILE( IMAX .GT. 1 )
|
||
|
IF( PHI(IMAX-1) .NE. ZERO ) THEN
|
||
|
EXIT
|
||
|
END IF
|
||
|
IMAX = IMAX - 1
|
||
|
END DO
|
||
|
IMIN = IMAX - 1
|
||
|
IF ( IMIN .GT. 1 ) THEN
|
||
|
DO WHILE( PHI(IMIN-1) .NE. ZERO )
|
||
|
IMIN = IMIN - 1
|
||
|
IF ( IMIN .LE. 1 ) EXIT
|
||
|
END DO
|
||
|
END IF
|
||
|
*
|
||
|
* Initialize iteration counter
|
||
|
*
|
||
|
MAXIT = MAXITR*Q*Q
|
||
|
ITER = 0
|
||
|
*
|
||
|
* Begin main iteration loop
|
||
|
*
|
||
|
DO WHILE( IMAX .GT. 1 )
|
||
|
*
|
||
|
* Compute the matrix entries
|
||
|
*
|
||
|
B11D(IMIN) = COS( THETA(IMIN) )
|
||
|
B21D(IMIN) = -SIN( THETA(IMIN) )
|
||
|
DO I = IMIN, IMAX - 1
|
||
|
B11E(I) = -SIN( THETA(I) ) * SIN( PHI(I) )
|
||
|
B11D(I+1) = COS( THETA(I+1) ) * COS( PHI(I) )
|
||
|
B12D(I) = SIN( THETA(I) ) * COS( PHI(I) )
|
||
|
B12E(I) = COS( THETA(I+1) ) * SIN( PHI(I) )
|
||
|
B21E(I) = -COS( THETA(I) ) * SIN( PHI(I) )
|
||
|
B21D(I+1) = -SIN( THETA(I+1) ) * COS( PHI(I) )
|
||
|
B22D(I) = COS( THETA(I) ) * COS( PHI(I) )
|
||
|
B22E(I) = -SIN( THETA(I+1) ) * SIN( PHI(I) )
|
||
|
END DO
|
||
|
B12D(IMAX) = SIN( THETA(IMAX) )
|
||
|
B22D(IMAX) = COS( THETA(IMAX) )
|
||
|
*
|
||
|
* Abort if not converging; otherwise, increment ITER
|
||
|
*
|
||
|
IF( ITER .GT. MAXIT ) THEN
|
||
|
INFO = 0
|
||
|
DO I = 1, Q
|
||
|
IF( PHI(I) .NE. ZERO )
|
||
|
$ INFO = INFO + 1
|
||
|
END DO
|
||
|
RETURN
|
||
|
END IF
|
||
|
*
|
||
|
ITER = ITER + IMAX - IMIN
|
||
|
*
|
||
|
* Compute shifts
|
||
|
*
|
||
|
THETAMAX = THETA(IMIN)
|
||
|
THETAMIN = THETA(IMIN)
|
||
|
DO I = IMIN+1, IMAX
|
||
|
IF( THETA(I) > THETAMAX )
|
||
|
$ THETAMAX = THETA(I)
|
||
|
IF( THETA(I) < THETAMIN )
|
||
|
$ THETAMIN = THETA(I)
|
||
|
END DO
|
||
|
*
|
||
|
IF( THETAMAX .GT. PIOVER2 - THRESH ) THEN
|
||
|
*
|
||
|
* Zero on diagonals of B11 and B22; induce deflation with a
|
||
|
* zero shift
|
||
|
*
|
||
|
MU = ZERO
|
||
|
NU = ONE
|
||
|
*
|
||
|
ELSE IF( THETAMIN .LT. THRESH ) THEN
|
||
|
*
|
||
|
* Zero on diagonals of B12 and B22; induce deflation with a
|
||
|
* zero shift
|
||
|
*
|
||
|
MU = ONE
|
||
|
NU = ZERO
|
||
|
*
|
||
|
ELSE
|
||
|
*
|
||
|
* Compute shifts for B11 and B21 and use the lesser
|
||
|
*
|
||
|
CALL SLAS2( B11D(IMAX-1), B11E(IMAX-1), B11D(IMAX), SIGMA11,
|
||
|
$ DUMMY )
|
||
|
CALL SLAS2( B21D(IMAX-1), B21E(IMAX-1), B21D(IMAX), SIGMA21,
|
||
|
$ DUMMY )
|
||
|
*
|
||
|
IF( SIGMA11 .LE. SIGMA21 ) THEN
|
||
|
MU = SIGMA11
|
||
|
NU = SQRT( ONE - MU**2 )
|
||
|
IF( MU .LT. THRESH ) THEN
|
||
|
MU = ZERO
|
||
|
NU = ONE
|
||
|
END IF
|
||
|
ELSE
|
||
|
NU = SIGMA21
|
||
|
MU = SQRT( 1.0 - NU**2 )
|
||
|
IF( NU .LT. THRESH ) THEN
|
||
|
MU = ONE
|
||
|
NU = ZERO
|
||
|
END IF
|
||
|
END IF
|
||
|
END IF
|
||
|
*
|
||
|
* Rotate to produce bulges in B11 and B21
|
||
|
*
|
||
|
IF( MU .LE. NU ) THEN
|
||
|
CALL SLARTGS( B11D(IMIN), B11E(IMIN), MU,
|
||
|
$ WORK(IV1TCS+IMIN-1), WORK(IV1TSN+IMIN-1) )
|
||
|
ELSE
|
||
|
CALL SLARTGS( B21D(IMIN), B21E(IMIN), NU,
|
||
|
$ WORK(IV1TCS+IMIN-1), WORK(IV1TSN+IMIN-1) )
|
||
|
END IF
|
||
|
*
|
||
|
TEMP = WORK(IV1TCS+IMIN-1)*B11D(IMIN) +
|
||
|
$ WORK(IV1TSN+IMIN-1)*B11E(IMIN)
|
||
|
B11E(IMIN) = WORK(IV1TCS+IMIN-1)*B11E(IMIN) -
|
||
|
$ WORK(IV1TSN+IMIN-1)*B11D(IMIN)
|
||
|
B11D(IMIN) = TEMP
|
||
|
B11BULGE = WORK(IV1TSN+IMIN-1)*B11D(IMIN+1)
|
||
|
B11D(IMIN+1) = WORK(IV1TCS+IMIN-1)*B11D(IMIN+1)
|
||
|
TEMP = WORK(IV1TCS+IMIN-1)*B21D(IMIN) +
|
||
|
$ WORK(IV1TSN+IMIN-1)*B21E(IMIN)
|
||
|
B21E(IMIN) = WORK(IV1TCS+IMIN-1)*B21E(IMIN) -
|
||
|
$ WORK(IV1TSN+IMIN-1)*B21D(IMIN)
|
||
|
B21D(IMIN) = TEMP
|
||
|
B21BULGE = WORK(IV1TSN+IMIN-1)*B21D(IMIN+1)
|
||
|
B21D(IMIN+1) = WORK(IV1TCS+IMIN-1)*B21D(IMIN+1)
|
||
|
*
|
||
|
* Compute THETA(IMIN)
|
||
|
*
|
||
|
THETA( IMIN ) = ATAN2( SQRT( B21D(IMIN)**2+B21BULGE**2 ),
|
||
|
$ SQRT( B11D(IMIN)**2+B11BULGE**2 ) )
|
||
|
*
|
||
|
* Chase the bulges in B11(IMIN+1,IMIN) and B21(IMIN+1,IMIN)
|
||
|
*
|
||
|
IF( B11D(IMIN)**2+B11BULGE**2 .GT. THRESH**2 ) THEN
|
||
|
CALL SLARTGP( B11BULGE, B11D(IMIN), WORK(IU1SN+IMIN-1),
|
||
|
$ WORK(IU1CS+IMIN-1), R )
|
||
|
ELSE IF( MU .LE. NU ) THEN
|
||
|
CALL SLARTGS( B11E( IMIN ), B11D( IMIN + 1 ), MU,
|
||
|
$ WORK(IU1CS+IMIN-1), WORK(IU1SN+IMIN-1) )
|
||
|
ELSE
|
||
|
CALL SLARTGS( B12D( IMIN ), B12E( IMIN ), NU,
|
||
|
$ WORK(IU1CS+IMIN-1), WORK(IU1SN+IMIN-1) )
|
||
|
END IF
|
||
|
IF( B21D(IMIN)**2+B21BULGE**2 .GT. THRESH**2 ) THEN
|
||
|
CALL SLARTGP( B21BULGE, B21D(IMIN), WORK(IU2SN+IMIN-1),
|
||
|
$ WORK(IU2CS+IMIN-1), R )
|
||
|
ELSE IF( NU .LT. MU ) THEN
|
||
|
CALL SLARTGS( B21E( IMIN ), B21D( IMIN + 1 ), NU,
|
||
|
$ WORK(IU2CS+IMIN-1), WORK(IU2SN+IMIN-1) )
|
||
|
ELSE
|
||
|
CALL SLARTGS( B22D(IMIN), B22E(IMIN), MU,
|
||
|
$ WORK(IU2CS+IMIN-1), WORK(IU2SN+IMIN-1) )
|
||
|
END IF
|
||
|
WORK(IU2CS+IMIN-1) = -WORK(IU2CS+IMIN-1)
|
||
|
WORK(IU2SN+IMIN-1) = -WORK(IU2SN+IMIN-1)
|
||
|
*
|
||
|
TEMP = WORK(IU1CS+IMIN-1)*B11E(IMIN) +
|
||
|
$ WORK(IU1SN+IMIN-1)*B11D(IMIN+1)
|
||
|
B11D(IMIN+1) = WORK(IU1CS+IMIN-1)*B11D(IMIN+1) -
|
||
|
$ WORK(IU1SN+IMIN-1)*B11E(IMIN)
|
||
|
B11E(IMIN) = TEMP
|
||
|
IF( IMAX .GT. IMIN+1 ) THEN
|
||
|
B11BULGE = WORK(IU1SN+IMIN-1)*B11E(IMIN+1)
|
||
|
B11E(IMIN+1) = WORK(IU1CS+IMIN-1)*B11E(IMIN+1)
|
||
|
END IF
|
||
|
TEMP = WORK(IU1CS+IMIN-1)*B12D(IMIN) +
|
||
|
$ WORK(IU1SN+IMIN-1)*B12E(IMIN)
|
||
|
B12E(IMIN) = WORK(IU1CS+IMIN-1)*B12E(IMIN) -
|
||
|
$ WORK(IU1SN+IMIN-1)*B12D(IMIN)
|
||
|
B12D(IMIN) = TEMP
|
||
|
B12BULGE = WORK(IU1SN+IMIN-1)*B12D(IMIN+1)
|
||
|
B12D(IMIN+1) = WORK(IU1CS+IMIN-1)*B12D(IMIN+1)
|
||
|
TEMP = WORK(IU2CS+IMIN-1)*B21E(IMIN) +
|
||
|
$ WORK(IU2SN+IMIN-1)*B21D(IMIN+1)
|
||
|
B21D(IMIN+1) = WORK(IU2CS+IMIN-1)*B21D(IMIN+1) -
|
||
|
$ WORK(IU2SN+IMIN-1)*B21E(IMIN)
|
||
|
B21E(IMIN) = TEMP
|
||
|
IF( IMAX .GT. IMIN+1 ) THEN
|
||
|
B21BULGE = WORK(IU2SN+IMIN-1)*B21E(IMIN+1)
|
||
|
B21E(IMIN+1) = WORK(IU2CS+IMIN-1)*B21E(IMIN+1)
|
||
|
END IF
|
||
|
TEMP = WORK(IU2CS+IMIN-1)*B22D(IMIN) +
|
||
|
$ WORK(IU2SN+IMIN-1)*B22E(IMIN)
|
||
|
B22E(IMIN) = WORK(IU2CS+IMIN-1)*B22E(IMIN) -
|
||
|
$ WORK(IU2SN+IMIN-1)*B22D(IMIN)
|
||
|
B22D(IMIN) = TEMP
|
||
|
B22BULGE = WORK(IU2SN+IMIN-1)*B22D(IMIN+1)
|
||
|
B22D(IMIN+1) = WORK(IU2CS+IMIN-1)*B22D(IMIN+1)
|
||
|
*
|
||
|
* Inner loop: chase bulges from B11(IMIN,IMIN+2),
|
||
|
* B12(IMIN,IMIN+1), B21(IMIN,IMIN+2), and B22(IMIN,IMIN+1) to
|
||
|
* bottom-right
|
||
|
*
|
||
|
DO I = IMIN+1, IMAX-1
|
||
|
*
|
||
|
* Compute PHI(I-1)
|
||
|
*
|
||
|
X1 = SIN(THETA(I-1))*B11E(I-1) + COS(THETA(I-1))*B21E(I-1)
|
||
|
X2 = SIN(THETA(I-1))*B11BULGE + COS(THETA(I-1))*B21BULGE
|
||
|
Y1 = SIN(THETA(I-1))*B12D(I-1) + COS(THETA(I-1))*B22D(I-1)
|
||
|
Y2 = SIN(THETA(I-1))*B12BULGE + COS(THETA(I-1))*B22BULGE
|
||
|
*
|
||
|
PHI(I-1) = ATAN2( SQRT(X1**2+X2**2), SQRT(Y1**2+Y2**2) )
|
||
|
*
|
||
|
* Determine if there are bulges to chase or if a new direct
|
||
|
* summand has been reached
|
||
|
*
|
||
|
RESTART11 = B11E(I-1)**2 + B11BULGE**2 .LE. THRESH**2
|
||
|
RESTART21 = B21E(I-1)**2 + B21BULGE**2 .LE. THRESH**2
|
||
|
RESTART12 = B12D(I-1)**2 + B12BULGE**2 .LE. THRESH**2
|
||
|
RESTART22 = B22D(I-1)**2 + B22BULGE**2 .LE. THRESH**2
|
||
|
*
|
||
|
* If possible, chase bulges from B11(I-1,I+1), B12(I-1,I),
|
||
|
* B21(I-1,I+1), and B22(I-1,I). If necessary, restart bulge-
|
||
|
* chasing by applying the original shift again.
|
||
|
*
|
||
|
IF( .NOT. RESTART11 .AND. .NOT. RESTART21 ) THEN
|
||
|
CALL SLARTGP( X2, X1, WORK(IV1TSN+I-1), WORK(IV1TCS+I-1),
|
||
|
$ R )
|
||
|
ELSE IF( .NOT. RESTART11 .AND. RESTART21 ) THEN
|
||
|
CALL SLARTGP( B11BULGE, B11E(I-1), WORK(IV1TSN+I-1),
|
||
|
$ WORK(IV1TCS+I-1), R )
|
||
|
ELSE IF( RESTART11 .AND. .NOT. RESTART21 ) THEN
|
||
|
CALL SLARTGP( B21BULGE, B21E(I-1), WORK(IV1TSN+I-1),
|
||
|
$ WORK(IV1TCS+I-1), R )
|
||
|
ELSE IF( MU .LE. NU ) THEN
|
||
|
CALL SLARTGS( B11D(I), B11E(I), MU, WORK(IV1TCS+I-1),
|
||
|
$ WORK(IV1TSN+I-1) )
|
||
|
ELSE
|
||
|
CALL SLARTGS( B21D(I), B21E(I), NU, WORK(IV1TCS+I-1),
|
||
|
$ WORK(IV1TSN+I-1) )
|
||
|
END IF
|
||
|
WORK(IV1TCS+I-1) = -WORK(IV1TCS+I-1)
|
||
|
WORK(IV1TSN+I-1) = -WORK(IV1TSN+I-1)
|
||
|
IF( .NOT. RESTART12 .AND. .NOT. RESTART22 ) THEN
|
||
|
CALL SLARTGP( Y2, Y1, WORK(IV2TSN+I-1-1),
|
||
|
$ WORK(IV2TCS+I-1-1), R )
|
||
|
ELSE IF( .NOT. RESTART12 .AND. RESTART22 ) THEN
|
||
|
CALL SLARTGP( B12BULGE, B12D(I-1), WORK(IV2TSN+I-1-1),
|
||
|
$ WORK(IV2TCS+I-1-1), R )
|
||
|
ELSE IF( RESTART12 .AND. .NOT. RESTART22 ) THEN
|
||
|
CALL SLARTGP( B22BULGE, B22D(I-1), WORK(IV2TSN+I-1-1),
|
||
|
$ WORK(IV2TCS+I-1-1), R )
|
||
|
ELSE IF( NU .LT. MU ) THEN
|
||
|
CALL SLARTGS( B12E(I-1), B12D(I), NU, WORK(IV2TCS+I-1-1),
|
||
|
$ WORK(IV2TSN+I-1-1) )
|
||
|
ELSE
|
||
|
CALL SLARTGS( B22E(I-1), B22D(I), MU, WORK(IV2TCS+I-1-1),
|
||
|
$ WORK(IV2TSN+I-1-1) )
|
||
|
END IF
|
||
|
*
|
||
|
TEMP = WORK(IV1TCS+I-1)*B11D(I) + WORK(IV1TSN+I-1)*B11E(I)
|
||
|
B11E(I) = WORK(IV1TCS+I-1)*B11E(I) -
|
||
|
$ WORK(IV1TSN+I-1)*B11D(I)
|
||
|
B11D(I) = TEMP
|
||
|
B11BULGE = WORK(IV1TSN+I-1)*B11D(I+1)
|
||
|
B11D(I+1) = WORK(IV1TCS+I-1)*B11D(I+1)
|
||
|
TEMP = WORK(IV1TCS+I-1)*B21D(I) + WORK(IV1TSN+I-1)*B21E(I)
|
||
|
B21E(I) = WORK(IV1TCS+I-1)*B21E(I) -
|
||
|
$ WORK(IV1TSN+I-1)*B21D(I)
|
||
|
B21D(I) = TEMP
|
||
|
B21BULGE = WORK(IV1TSN+I-1)*B21D(I+1)
|
||
|
B21D(I+1) = WORK(IV1TCS+I-1)*B21D(I+1)
|
||
|
TEMP = WORK(IV2TCS+I-1-1)*B12E(I-1) +
|
||
|
$ WORK(IV2TSN+I-1-1)*B12D(I)
|
||
|
B12D(I) = WORK(IV2TCS+I-1-1)*B12D(I) -
|
||
|
$ WORK(IV2TSN+I-1-1)*B12E(I-1)
|
||
|
B12E(I-1) = TEMP
|
||
|
B12BULGE = WORK(IV2TSN+I-1-1)*B12E(I)
|
||
|
B12E(I) = WORK(IV2TCS+I-1-1)*B12E(I)
|
||
|
TEMP = WORK(IV2TCS+I-1-1)*B22E(I-1) +
|
||
|
$ WORK(IV2TSN+I-1-1)*B22D(I)
|
||
|
B22D(I) = WORK(IV2TCS+I-1-1)*B22D(I) -
|
||
|
$ WORK(IV2TSN+I-1-1)*B22E(I-1)
|
||
|
B22E(I-1) = TEMP
|
||
|
B22BULGE = WORK(IV2TSN+I-1-1)*B22E(I)
|
||
|
B22E(I) = WORK(IV2TCS+I-1-1)*B22E(I)
|
||
|
*
|
||
|
* Compute THETA(I)
|
||
|
*
|
||
|
X1 = COS(PHI(I-1))*B11D(I) + SIN(PHI(I-1))*B12E(I-1)
|
||
|
X2 = COS(PHI(I-1))*B11BULGE + SIN(PHI(I-1))*B12BULGE
|
||
|
Y1 = COS(PHI(I-1))*B21D(I) + SIN(PHI(I-1))*B22E(I-1)
|
||
|
Y2 = COS(PHI(I-1))*B21BULGE + SIN(PHI(I-1))*B22BULGE
|
||
|
*
|
||
|
THETA(I) = ATAN2( SQRT(Y1**2+Y2**2), SQRT(X1**2+X2**2) )
|
||
|
*
|
||
|
* Determine if there are bulges to chase or if a new direct
|
||
|
* summand has been reached
|
||
|
*
|
||
|
RESTART11 = B11D(I)**2 + B11BULGE**2 .LE. THRESH**2
|
||
|
RESTART12 = B12E(I-1)**2 + B12BULGE**2 .LE. THRESH**2
|
||
|
RESTART21 = B21D(I)**2 + B21BULGE**2 .LE. THRESH**2
|
||
|
RESTART22 = B22E(I-1)**2 + B22BULGE**2 .LE. THRESH**2
|
||
|
*
|
||
|
* If possible, chase bulges from B11(I+1,I), B12(I+1,I-1),
|
||
|
* B21(I+1,I), and B22(I+1,I-1). If necessary, restart bulge-
|
||
|
* chasing by applying the original shift again.
|
||
|
*
|
||
|
IF( .NOT. RESTART11 .AND. .NOT. RESTART12 ) THEN
|
||
|
CALL SLARTGP( X2, X1, WORK(IU1SN+I-1), WORK(IU1CS+I-1),
|
||
|
$ R )
|
||
|
ELSE IF( .NOT. RESTART11 .AND. RESTART12 ) THEN
|
||
|
CALL SLARTGP( B11BULGE, B11D(I), WORK(IU1SN+I-1),
|
||
|
$ WORK(IU1CS+I-1), R )
|
||
|
ELSE IF( RESTART11 .AND. .NOT. RESTART12 ) THEN
|
||
|
CALL SLARTGP( B12BULGE, B12E(I-1), WORK(IU1SN+I-1),
|
||
|
$ WORK(IU1CS+I-1), R )
|
||
|
ELSE IF( MU .LE. NU ) THEN
|
||
|
CALL SLARTGS( B11E(I), B11D(I+1), MU, WORK(IU1CS+I-1),
|
||
|
$ WORK(IU1SN+I-1) )
|
||
|
ELSE
|
||
|
CALL SLARTGS( B12D(I), B12E(I), NU, WORK(IU1CS+I-1),
|
||
|
$ WORK(IU1SN+I-1) )
|
||
|
END IF
|
||
|
IF( .NOT. RESTART21 .AND. .NOT. RESTART22 ) THEN
|
||
|
CALL SLARTGP( Y2, Y1, WORK(IU2SN+I-1), WORK(IU2CS+I-1),
|
||
|
$ R )
|
||
|
ELSE IF( .NOT. RESTART21 .AND. RESTART22 ) THEN
|
||
|
CALL SLARTGP( B21BULGE, B21D(I), WORK(IU2SN+I-1),
|
||
|
$ WORK(IU2CS+I-1), R )
|
||
|
ELSE IF( RESTART21 .AND. .NOT. RESTART22 ) THEN
|
||
|
CALL SLARTGP( B22BULGE, B22E(I-1), WORK(IU2SN+I-1),
|
||
|
$ WORK(IU2CS+I-1), R )
|
||
|
ELSE IF( NU .LT. MU ) THEN
|
||
|
CALL SLARTGS( B21E(I), B21E(I+1), NU, WORK(IU2CS+I-1),
|
||
|
$ WORK(IU2SN+I-1) )
|
||
|
ELSE
|
||
|
CALL SLARTGS( B22D(I), B22E(I), MU, WORK(IU2CS+I-1),
|
||
|
$ WORK(IU2SN+I-1) )
|
||
|
END IF
|
||
|
WORK(IU2CS+I-1) = -WORK(IU2CS+I-1)
|
||
|
WORK(IU2SN+I-1) = -WORK(IU2SN+I-1)
|
||
|
*
|
||
|
TEMP = WORK(IU1CS+I-1)*B11E(I) + WORK(IU1SN+I-1)*B11D(I+1)
|
||
|
B11D(I+1) = WORK(IU1CS+I-1)*B11D(I+1) -
|
||
|
$ WORK(IU1SN+I-1)*B11E(I)
|
||
|
B11E(I) = TEMP
|
||
|
IF( I .LT. IMAX - 1 ) THEN
|
||
|
B11BULGE = WORK(IU1SN+I-1)*B11E(I+1)
|
||
|
B11E(I+1) = WORK(IU1CS+I-1)*B11E(I+1)
|
||
|
END IF
|
||
|
TEMP = WORK(IU2CS+I-1)*B21E(I) + WORK(IU2SN+I-1)*B21D(I+1)
|
||
|
B21D(I+1) = WORK(IU2CS+I-1)*B21D(I+1) -
|
||
|
$ WORK(IU2SN+I-1)*B21E(I)
|
||
|
B21E(I) = TEMP
|
||
|
IF( I .LT. IMAX - 1 ) THEN
|
||
|
B21BULGE = WORK(IU2SN+I-1)*B21E(I+1)
|
||
|
B21E(I+1) = WORK(IU2CS+I-1)*B21E(I+1)
|
||
|
END IF
|
||
|
TEMP = WORK(IU1CS+I-1)*B12D(I) + WORK(IU1SN+I-1)*B12E(I)
|
||
|
B12E(I) = WORK(IU1CS+I-1)*B12E(I) - WORK(IU1SN+I-1)*B12D(I)
|
||
|
B12D(I) = TEMP
|
||
|
B12BULGE = WORK(IU1SN+I-1)*B12D(I+1)
|
||
|
B12D(I+1) = WORK(IU1CS+I-1)*B12D(I+1)
|
||
|
TEMP = WORK(IU2CS+I-1)*B22D(I) + WORK(IU2SN+I-1)*B22E(I)
|
||
|
B22E(I) = WORK(IU2CS+I-1)*B22E(I) - WORK(IU2SN+I-1)*B22D(I)
|
||
|
B22D(I) = TEMP
|
||
|
B22BULGE = WORK(IU2SN+I-1)*B22D(I+1)
|
||
|
B22D(I+1) = WORK(IU2CS+I-1)*B22D(I+1)
|
||
|
*
|
||
|
END DO
|
||
|
*
|
||
|
* Compute PHI(IMAX-1)
|
||
|
*
|
||
|
X1 = SIN(THETA(IMAX-1))*B11E(IMAX-1) +
|
||
|
$ COS(THETA(IMAX-1))*B21E(IMAX-1)
|
||
|
Y1 = SIN(THETA(IMAX-1))*B12D(IMAX-1) +
|
||
|
$ COS(THETA(IMAX-1))*B22D(IMAX-1)
|
||
|
Y2 = SIN(THETA(IMAX-1))*B12BULGE + COS(THETA(IMAX-1))*B22BULGE
|
||
|
*
|
||
|
PHI(IMAX-1) = ATAN2( ABS(X1), SQRT(Y1**2+Y2**2) )
|
||
|
*
|
||
|
* Chase bulges from B12(IMAX-1,IMAX) and B22(IMAX-1,IMAX)
|
||
|
*
|
||
|
RESTART12 = B12D(IMAX-1)**2 + B12BULGE**2 .LE. THRESH**2
|
||
|
RESTART22 = B22D(IMAX-1)**2 + B22BULGE**2 .LE. THRESH**2
|
||
|
*
|
||
|
IF( .NOT. RESTART12 .AND. .NOT. RESTART22 ) THEN
|
||
|
CALL SLARTGP( Y2, Y1, WORK(IV2TSN+IMAX-1-1),
|
||
|
$ WORK(IV2TCS+IMAX-1-1), R )
|
||
|
ELSE IF( .NOT. RESTART12 .AND. RESTART22 ) THEN
|
||
|
CALL SLARTGP( B12BULGE, B12D(IMAX-1), WORK(IV2TSN+IMAX-1-1),
|
||
|
$ WORK(IV2TCS+IMAX-1-1), R )
|
||
|
ELSE IF( RESTART12 .AND. .NOT. RESTART22 ) THEN
|
||
|
CALL SLARTGP( B22BULGE, B22D(IMAX-1), WORK(IV2TSN+IMAX-1-1),
|
||
|
$ WORK(IV2TCS+IMAX-1-1), R )
|
||
|
ELSE IF( NU .LT. MU ) THEN
|
||
|
CALL SLARTGS( B12E(IMAX-1), B12D(IMAX), NU,
|
||
|
$ WORK(IV2TCS+IMAX-1-1), WORK(IV2TSN+IMAX-1-1) )
|
||
|
ELSE
|
||
|
CALL SLARTGS( B22E(IMAX-1), B22D(IMAX), MU,
|
||
|
$ WORK(IV2TCS+IMAX-1-1), WORK(IV2TSN+IMAX-1-1) )
|
||
|
END IF
|
||
|
*
|
||
|
TEMP = WORK(IV2TCS+IMAX-1-1)*B12E(IMAX-1) +
|
||
|
$ WORK(IV2TSN+IMAX-1-1)*B12D(IMAX)
|
||
|
B12D(IMAX) = WORK(IV2TCS+IMAX-1-1)*B12D(IMAX) -
|
||
|
$ WORK(IV2TSN+IMAX-1-1)*B12E(IMAX-1)
|
||
|
B12E(IMAX-1) = TEMP
|
||
|
TEMP = WORK(IV2TCS+IMAX-1-1)*B22E(IMAX-1) +
|
||
|
$ WORK(IV2TSN+IMAX-1-1)*B22D(IMAX)
|
||
|
B22D(IMAX) = WORK(IV2TCS+IMAX-1-1)*B22D(IMAX) -
|
||
|
$ WORK(IV2TSN+IMAX-1-1)*B22E(IMAX-1)
|
||
|
B22E(IMAX-1) = TEMP
|
||
|
*
|
||
|
* Update singular vectors
|
||
|
*
|
||
|
IF( WANTU1 ) THEN
|
||
|
IF( COLMAJOR ) THEN
|
||
|
CALL SLASR( 'R', 'V', 'F', P, IMAX-IMIN+1,
|
||
|
$ WORK(IU1CS+IMIN-1), WORK(IU1SN+IMIN-1),
|
||
|
$ U1(1,IMIN), LDU1 )
|
||
|
ELSE
|
||
|
CALL SLASR( 'L', 'V', 'F', IMAX-IMIN+1, P,
|
||
|
$ WORK(IU1CS+IMIN-1), WORK(IU1SN+IMIN-1),
|
||
|
$ U1(IMIN,1), LDU1 )
|
||
|
END IF
|
||
|
END IF
|
||
|
IF( WANTU2 ) THEN
|
||
|
IF( COLMAJOR ) THEN
|
||
|
CALL SLASR( 'R', 'V', 'F', M-P, IMAX-IMIN+1,
|
||
|
$ WORK(IU2CS+IMIN-1), WORK(IU2SN+IMIN-1),
|
||
|
$ U2(1,IMIN), LDU2 )
|
||
|
ELSE
|
||
|
CALL SLASR( 'L', 'V', 'F', IMAX-IMIN+1, M-P,
|
||
|
$ WORK(IU2CS+IMIN-1), WORK(IU2SN+IMIN-1),
|
||
|
$ U2(IMIN,1), LDU2 )
|
||
|
END IF
|
||
|
END IF
|
||
|
IF( WANTV1T ) THEN
|
||
|
IF( COLMAJOR ) THEN
|
||
|
CALL SLASR( 'L', 'V', 'F', IMAX-IMIN+1, Q,
|
||
|
$ WORK(IV1TCS+IMIN-1), WORK(IV1TSN+IMIN-1),
|
||
|
$ V1T(IMIN,1), LDV1T )
|
||
|
ELSE
|
||
|
CALL SLASR( 'R', 'V', 'F', Q, IMAX-IMIN+1,
|
||
|
$ WORK(IV1TCS+IMIN-1), WORK(IV1TSN+IMIN-1),
|
||
|
$ V1T(1,IMIN), LDV1T )
|
||
|
END IF
|
||
|
END IF
|
||
|
IF( WANTV2T ) THEN
|
||
|
IF( COLMAJOR ) THEN
|
||
|
CALL SLASR( 'L', 'V', 'F', IMAX-IMIN+1, M-Q,
|
||
|
$ WORK(IV2TCS+IMIN-1), WORK(IV2TSN+IMIN-1),
|
||
|
$ V2T(IMIN,1), LDV2T )
|
||
|
ELSE
|
||
|
CALL SLASR( 'R', 'V', 'F', M-Q, IMAX-IMIN+1,
|
||
|
$ WORK(IV2TCS+IMIN-1), WORK(IV2TSN+IMIN-1),
|
||
|
$ V2T(1,IMIN), LDV2T )
|
||
|
END IF
|
||
|
END IF
|
||
|
*
|
||
|
* Fix signs on B11(IMAX-1,IMAX) and B21(IMAX-1,IMAX)
|
||
|
*
|
||
|
IF( B11E(IMAX-1)+B21E(IMAX-1) .GT. 0 ) THEN
|
||
|
B11D(IMAX) = -B11D(IMAX)
|
||
|
B21D(IMAX) = -B21D(IMAX)
|
||
|
IF( WANTV1T ) THEN
|
||
|
IF( COLMAJOR ) THEN
|
||
|
CALL SSCAL( Q, NEGONE, V1T(IMAX,1), LDV1T )
|
||
|
ELSE
|
||
|
CALL SSCAL( Q, NEGONE, V1T(1,IMAX), 1 )
|
||
|
END IF
|
||
|
END IF
|
||
|
END IF
|
||
|
*
|
||
|
* Compute THETA(IMAX)
|
||
|
*
|
||
|
X1 = COS(PHI(IMAX-1))*B11D(IMAX) +
|
||
|
$ SIN(PHI(IMAX-1))*B12E(IMAX-1)
|
||
|
Y1 = COS(PHI(IMAX-1))*B21D(IMAX) +
|
||
|
$ SIN(PHI(IMAX-1))*B22E(IMAX-1)
|
||
|
*
|
||
|
THETA(IMAX) = ATAN2( ABS(Y1), ABS(X1) )
|
||
|
*
|
||
|
* Fix signs on B11(IMAX,IMAX), B12(IMAX,IMAX-1), B21(IMAX,IMAX),
|
||
|
* and B22(IMAX,IMAX-1)
|
||
|
*
|
||
|
IF( B11D(IMAX)+B12E(IMAX-1) .LT. 0 ) THEN
|
||
|
B12D(IMAX) = -B12D(IMAX)
|
||
|
IF( WANTU1 ) THEN
|
||
|
IF( COLMAJOR ) THEN
|
||
|
CALL SSCAL( P, NEGONE, U1(1,IMAX), 1 )
|
||
|
ELSE
|
||
|
CALL SSCAL( P, NEGONE, U1(IMAX,1), LDU1 )
|
||
|
END IF
|
||
|
END IF
|
||
|
END IF
|
||
|
IF( B21D(IMAX)+B22E(IMAX-1) .GT. 0 ) THEN
|
||
|
B22D(IMAX) = -B22D(IMAX)
|
||
|
IF( WANTU2 ) THEN
|
||
|
IF( COLMAJOR ) THEN
|
||
|
CALL SSCAL( M-P, NEGONE, U2(1,IMAX), 1 )
|
||
|
ELSE
|
||
|
CALL SSCAL( M-P, NEGONE, U2(IMAX,1), LDU2 )
|
||
|
END IF
|
||
|
END IF
|
||
|
END IF
|
||
|
*
|
||
|
* Fix signs on B12(IMAX,IMAX) and B22(IMAX,IMAX)
|
||
|
*
|
||
|
IF( B12D(IMAX)+B22D(IMAX) .LT. 0 ) THEN
|
||
|
IF( WANTV2T ) THEN
|
||
|
IF( COLMAJOR ) THEN
|
||
|
CALL SSCAL( M-Q, NEGONE, V2T(IMAX,1), LDV2T )
|
||
|
ELSE
|
||
|
CALL SSCAL( M-Q, NEGONE, V2T(1,IMAX), 1 )
|
||
|
END IF
|
||
|
END IF
|
||
|
END IF
|
||
|
*
|
||
|
* Test for negligible sines or cosines
|
||
|
*
|
||
|
DO I = IMIN, IMAX
|
||
|
IF( THETA(I) .LT. THRESH ) THEN
|
||
|
THETA(I) = ZERO
|
||
|
ELSE IF( THETA(I) .GT. PIOVER2-THRESH ) THEN
|
||
|
THETA(I) = PIOVER2
|
||
|
END IF
|
||
|
END DO
|
||
|
DO I = IMIN, IMAX-1
|
||
|
IF( PHI(I) .LT. THRESH ) THEN
|
||
|
PHI(I) = ZERO
|
||
|
ELSE IF( PHI(I) .GT. PIOVER2-THRESH ) THEN
|
||
|
PHI(I) = PIOVER2
|
||
|
END IF
|
||
|
END DO
|
||
|
*
|
||
|
* Deflate
|
||
|
*
|
||
|
IF (IMAX .GT. 1) THEN
|
||
|
DO WHILE( PHI(IMAX-1) .EQ. ZERO )
|
||
|
IMAX = IMAX - 1
|
||
|
IF (IMAX .LE. 1) EXIT
|
||
|
END DO
|
||
|
END IF
|
||
|
IF( IMIN .GT. IMAX - 1 )
|
||
|
$ IMIN = IMAX - 1
|
||
|
IF (IMIN .GT. 1) THEN
|
||
|
DO WHILE (PHI(IMIN-1) .NE. ZERO)
|
||
|
IMIN = IMIN - 1
|
||
|
IF (IMIN .LE. 1) EXIT
|
||
|
END DO
|
||
|
END IF
|
||
|
*
|
||
|
* Repeat main iteration loop
|
||
|
*
|
||
|
END DO
|
||
|
*
|
||
|
* Postprocessing: order THETA from least to greatest
|
||
|
*
|
||
|
DO I = 1, Q
|
||
|
*
|
||
|
MINI = I
|
||
|
THETAMIN = THETA(I)
|
||
|
DO J = I+1, Q
|
||
|
IF( THETA(J) .LT. THETAMIN ) THEN
|
||
|
MINI = J
|
||
|
THETAMIN = THETA(J)
|
||
|
END IF
|
||
|
END DO
|
||
|
*
|
||
|
IF( MINI .NE. I ) THEN
|
||
|
THETA(MINI) = THETA(I)
|
||
|
THETA(I) = THETAMIN
|
||
|
IF( COLMAJOR ) THEN
|
||
|
IF( WANTU1 )
|
||
|
$ CALL SSWAP( P, U1(1,I), 1, U1(1,MINI), 1 )
|
||
|
IF( WANTU2 )
|
||
|
$ CALL SSWAP( M-P, U2(1,I), 1, U2(1,MINI), 1 )
|
||
|
IF( WANTV1T )
|
||
|
$ CALL SSWAP( Q, V1T(I,1), LDV1T, V1T(MINI,1), LDV1T )
|
||
|
IF( WANTV2T )
|
||
|
$ CALL SSWAP( M-Q, V2T(I,1), LDV2T, V2T(MINI,1),
|
||
|
$ LDV2T )
|
||
|
ELSE
|
||
|
IF( WANTU1 )
|
||
|
$ CALL SSWAP( P, U1(I,1), LDU1, U1(MINI,1), LDU1 )
|
||
|
IF( WANTU2 )
|
||
|
$ CALL SSWAP( M-P, U2(I,1), LDU2, U2(MINI,1), LDU2 )
|
||
|
IF( WANTV1T )
|
||
|
$ CALL SSWAP( Q, V1T(1,I), 1, V1T(1,MINI), 1 )
|
||
|
IF( WANTV2T )
|
||
|
$ CALL SSWAP( M-Q, V2T(1,I), 1, V2T(1,MINI), 1 )
|
||
|
END IF
|
||
|
END IF
|
||
|
*
|
||
|
END DO
|
||
|
*
|
||
|
RETURN
|
||
|
*
|
||
|
* End of SBBCSD
|
||
|
*
|
||
|
END
|
||
|
|