You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
285 lines
7.8 KiB
285 lines
7.8 KiB
2 years ago
|
*> \brief \b SGEQLF
|
||
|
*
|
||
|
* =========== DOCUMENTATION ===========
|
||
|
*
|
||
|
* Online html documentation available at
|
||
|
* http://www.netlib.org/lapack/explore-html/
|
||
|
*
|
||
|
*> \htmlonly
|
||
|
*> Download SGEQLF + dependencies
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sgeqlf.f">
|
||
|
*> [TGZ]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sgeqlf.f">
|
||
|
*> [ZIP]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sgeqlf.f">
|
||
|
*> [TXT]</a>
|
||
|
*> \endhtmlonly
|
||
|
*
|
||
|
* Definition:
|
||
|
* ===========
|
||
|
*
|
||
|
* SUBROUTINE SGEQLF( M, N, A, LDA, TAU, WORK, LWORK, INFO )
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
* INTEGER INFO, LDA, LWORK, M, N
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
* REAL A( LDA, * ), TAU( * ), WORK( * )
|
||
|
* ..
|
||
|
*
|
||
|
*
|
||
|
*> \par Purpose:
|
||
|
* =============
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*> SGEQLF computes a QL factorization of a real M-by-N matrix A:
|
||
|
*> A = Q * L.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Arguments:
|
||
|
* ==========
|
||
|
*
|
||
|
*> \param[in] M
|
||
|
*> \verbatim
|
||
|
*> M is INTEGER
|
||
|
*> The number of rows of the matrix A. M >= 0.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] N
|
||
|
*> \verbatim
|
||
|
*> N is INTEGER
|
||
|
*> The number of columns of the matrix A. N >= 0.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] A
|
||
|
*> \verbatim
|
||
|
*> A is REAL array, dimension (LDA,N)
|
||
|
*> On entry, the M-by-N matrix A.
|
||
|
*> On exit,
|
||
|
*> if m >= n, the lower triangle of the subarray
|
||
|
*> A(m-n+1:m,1:n) contains the N-by-N lower triangular matrix L;
|
||
|
*> if m <= n, the elements on and below the (n-m)-th
|
||
|
*> superdiagonal contain the M-by-N lower trapezoidal matrix L;
|
||
|
*> the remaining elements, with the array TAU, represent the
|
||
|
*> orthogonal matrix Q as a product of elementary reflectors
|
||
|
*> (see Further Details).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDA
|
||
|
*> \verbatim
|
||
|
*> LDA is INTEGER
|
||
|
*> The leading dimension of the array A. LDA >= max(1,M).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] TAU
|
||
|
*> \verbatim
|
||
|
*> TAU is REAL array, dimension (min(M,N))
|
||
|
*> The scalar factors of the elementary reflectors (see Further
|
||
|
*> Details).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] WORK
|
||
|
*> \verbatim
|
||
|
*> WORK is REAL array, dimension (MAX(1,LWORK))
|
||
|
*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LWORK
|
||
|
*> \verbatim
|
||
|
*> LWORK is INTEGER
|
||
|
*> The dimension of the array WORK. LWORK >= max(1,N).
|
||
|
*> For optimum performance LWORK >= N*NB, where NB is the
|
||
|
*> optimal blocksize.
|
||
|
*>
|
||
|
*> If LWORK = -1, then a workspace query is assumed; the routine
|
||
|
*> only calculates the optimal size of the WORK array, returns
|
||
|
*> this value as the first entry of the WORK array, and no error
|
||
|
*> message related to LWORK is issued by XERBLA.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] INFO
|
||
|
*> \verbatim
|
||
|
*> INFO is INTEGER
|
||
|
*> = 0: successful exit
|
||
|
*> < 0: if INFO = -i, the i-th argument had an illegal value
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Authors:
|
||
|
* ========
|
||
|
*
|
||
|
*> \author Univ. of Tennessee
|
||
|
*> \author Univ. of California Berkeley
|
||
|
*> \author Univ. of Colorado Denver
|
||
|
*> \author NAG Ltd.
|
||
|
*
|
||
|
*> \ingroup realGEcomputational
|
||
|
*
|
||
|
*> \par Further Details:
|
||
|
* =====================
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*> The matrix Q is represented as a product of elementary reflectors
|
||
|
*>
|
||
|
*> Q = H(k) . . . H(2) H(1), where k = min(m,n).
|
||
|
*>
|
||
|
*> Each H(i) has the form
|
||
|
*>
|
||
|
*> H(i) = I - tau * v * v**T
|
||
|
*>
|
||
|
*> where tau is a real scalar, and v is a real vector with
|
||
|
*> v(m-k+i+1:m) = 0 and v(m-k+i) = 1; v(1:m-k+i-1) is stored on exit in
|
||
|
*> A(1:m-k+i-1,n-k+i), and tau in TAU(i).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
* =====================================================================
|
||
|
SUBROUTINE SGEQLF( M, N, A, LDA, TAU, WORK, LWORK, INFO )
|
||
|
*
|
||
|
* -- LAPACK computational routine --
|
||
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
INTEGER INFO, LDA, LWORK, M, N
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
REAL A( LDA, * ), TAU( * ), WORK( * )
|
||
|
* ..
|
||
|
*
|
||
|
* =====================================================================
|
||
|
*
|
||
|
* .. Local Scalars ..
|
||
|
LOGICAL LQUERY
|
||
|
INTEGER I, IB, IINFO, IWS, K, KI, KK, LDWORK, LWKOPT,
|
||
|
$ MU, NB, NBMIN, NU, NX
|
||
|
* ..
|
||
|
* .. External Subroutines ..
|
||
|
EXTERNAL SGEQL2, SLARFB, SLARFT, XERBLA
|
||
|
* ..
|
||
|
* .. Intrinsic Functions ..
|
||
|
INTRINSIC MAX, MIN
|
||
|
* ..
|
||
|
* .. External Functions ..
|
||
|
INTEGER ILAENV
|
||
|
EXTERNAL ILAENV
|
||
|
* ..
|
||
|
* .. Executable Statements ..
|
||
|
*
|
||
|
* Test the input arguments
|
||
|
*
|
||
|
INFO = 0
|
||
|
LQUERY = ( LWORK.EQ.-1 )
|
||
|
IF( M.LT.0 ) THEN
|
||
|
INFO = -1
|
||
|
ELSE IF( N.LT.0 ) THEN
|
||
|
INFO = -2
|
||
|
ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
|
||
|
INFO = -4
|
||
|
END IF
|
||
|
*
|
||
|
IF( INFO.EQ.0 ) THEN
|
||
|
K = MIN( M, N )
|
||
|
IF( K.EQ.0 ) THEN
|
||
|
LWKOPT = 1
|
||
|
ELSE
|
||
|
NB = ILAENV( 1, 'SGEQLF', ' ', M, N, -1, -1 )
|
||
|
LWKOPT = N*NB
|
||
|
END IF
|
||
|
WORK( 1 ) = LWKOPT
|
||
|
*
|
||
|
IF( LWORK.LT.MAX( 1, N ) .AND. .NOT.LQUERY ) THEN
|
||
|
INFO = -7
|
||
|
END IF
|
||
|
END IF
|
||
|
*
|
||
|
IF( INFO.NE.0 ) THEN
|
||
|
CALL XERBLA( 'SGEQLF', -INFO )
|
||
|
RETURN
|
||
|
ELSE IF( LQUERY ) THEN
|
||
|
RETURN
|
||
|
END IF
|
||
|
*
|
||
|
* Quick return if possible
|
||
|
*
|
||
|
IF( K.EQ.0 ) THEN
|
||
|
RETURN
|
||
|
END IF
|
||
|
*
|
||
|
NBMIN = 2
|
||
|
NX = 1
|
||
|
IWS = N
|
||
|
IF( NB.GT.1 .AND. NB.LT.K ) THEN
|
||
|
*
|
||
|
* Determine when to cross over from blocked to unblocked code.
|
||
|
*
|
||
|
NX = MAX( 0, ILAENV( 3, 'SGEQLF', ' ', M, N, -1, -1 ) )
|
||
|
IF( NX.LT.K ) THEN
|
||
|
*
|
||
|
* Determine if workspace is large enough for blocked code.
|
||
|
*
|
||
|
LDWORK = N
|
||
|
IWS = LDWORK*NB
|
||
|
IF( LWORK.LT.IWS ) THEN
|
||
|
*
|
||
|
* Not enough workspace to use optimal NB: reduce NB and
|
||
|
* determine the minimum value of NB.
|
||
|
*
|
||
|
NB = LWORK / LDWORK
|
||
|
NBMIN = MAX( 2, ILAENV( 2, 'SGEQLF', ' ', M, N, -1,
|
||
|
$ -1 ) )
|
||
|
END IF
|
||
|
END IF
|
||
|
END IF
|
||
|
*
|
||
|
IF( NB.GE.NBMIN .AND. NB.LT.K .AND. NX.LT.K ) THEN
|
||
|
*
|
||
|
* Use blocked code initially.
|
||
|
* The last kk columns are handled by the block method.
|
||
|
*
|
||
|
KI = ( ( K-NX-1 ) / NB )*NB
|
||
|
KK = MIN( K, KI+NB )
|
||
|
*
|
||
|
DO 10 I = K - KK + KI + 1, K - KK + 1, -NB
|
||
|
IB = MIN( K-I+1, NB )
|
||
|
*
|
||
|
* Compute the QL factorization of the current block
|
||
|
* A(1:m-k+i+ib-1,n-k+i:n-k+i+ib-1)
|
||
|
*
|
||
|
CALL SGEQL2( M-K+I+IB-1, IB, A( 1, N-K+I ), LDA, TAU( I ),
|
||
|
$ WORK, IINFO )
|
||
|
IF( N-K+I.GT.1 ) THEN
|
||
|
*
|
||
|
* Form the triangular factor of the block reflector
|
||
|
* H = H(i+ib-1) . . . H(i+1) H(i)
|
||
|
*
|
||
|
CALL SLARFT( 'Backward', 'Columnwise', M-K+I+IB-1, IB,
|
||
|
$ A( 1, N-K+I ), LDA, TAU( I ), WORK, LDWORK )
|
||
|
*
|
||
|
* Apply H**T to A(1:m-k+i+ib-1,1:n-k+i-1) from the left
|
||
|
*
|
||
|
CALL SLARFB( 'Left', 'Transpose', 'Backward',
|
||
|
$ 'Columnwise', M-K+I+IB-1, N-K+I-1, IB,
|
||
|
$ A( 1, N-K+I ), LDA, WORK, LDWORK, A, LDA,
|
||
|
$ WORK( IB+1 ), LDWORK )
|
||
|
END IF
|
||
|
10 CONTINUE
|
||
|
MU = M - K + I + NB - 1
|
||
|
NU = N - K + I + NB - 1
|
||
|
ELSE
|
||
|
MU = M
|
||
|
NU = N
|
||
|
END IF
|
||
|
*
|
||
|
* Use unblocked code to factor the last or only block
|
||
|
*
|
||
|
IF( MU.GT.0 .AND. NU.GT.0 )
|
||
|
$ CALL SGEQL2( MU, NU, A, LDA, TAU, WORK, IINFO )
|
||
|
*
|
||
|
WORK( 1 ) = IWS
|
||
|
RETURN
|
||
|
*
|
||
|
* End of SGEQLF
|
||
|
*
|
||
|
END
|