You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
352 lines
10 KiB
352 lines
10 KiB
2 years ago
|
*> \brief <b> SGGLSE solves overdetermined or underdetermined systems for OTHER matrices</b>
|
||
|
*
|
||
|
* =========== DOCUMENTATION ===========
|
||
|
*
|
||
|
* Online html documentation available at
|
||
|
* http://www.netlib.org/lapack/explore-html/
|
||
|
*
|
||
|
*> \htmlonly
|
||
|
*> Download SGGLSE + dependencies
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sgglse.f">
|
||
|
*> [TGZ]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sgglse.f">
|
||
|
*> [ZIP]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sgglse.f">
|
||
|
*> [TXT]</a>
|
||
|
*> \endhtmlonly
|
||
|
*
|
||
|
* Definition:
|
||
|
* ===========
|
||
|
*
|
||
|
* SUBROUTINE SGGLSE( M, N, P, A, LDA, B, LDB, C, D, X, WORK, LWORK,
|
||
|
* INFO )
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
* INTEGER INFO, LDA, LDB, LWORK, M, N, P
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
* REAL A( LDA, * ), B( LDB, * ), C( * ), D( * ),
|
||
|
* $ WORK( * ), X( * )
|
||
|
* ..
|
||
|
*
|
||
|
*
|
||
|
*> \par Purpose:
|
||
|
* =============
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*> SGGLSE solves the linear equality-constrained least squares (LSE)
|
||
|
*> problem:
|
||
|
*>
|
||
|
*> minimize || c - A*x ||_2 subject to B*x = d
|
||
|
*>
|
||
|
*> where A is an M-by-N matrix, B is a P-by-N matrix, c is a given
|
||
|
*> M-vector, and d is a given P-vector. It is assumed that
|
||
|
*> P <= N <= M+P, and
|
||
|
*>
|
||
|
*> rank(B) = P and rank( (A) ) = N.
|
||
|
*> ( (B) )
|
||
|
*>
|
||
|
*> These conditions ensure that the LSE problem has a unique solution,
|
||
|
*> which is obtained using a generalized RQ factorization of the
|
||
|
*> matrices (B, A) given by
|
||
|
*>
|
||
|
*> B = (0 R)*Q, A = Z*T*Q.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Arguments:
|
||
|
* ==========
|
||
|
*
|
||
|
*> \param[in] M
|
||
|
*> \verbatim
|
||
|
*> M is INTEGER
|
||
|
*> The number of rows of the matrix A. M >= 0.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] N
|
||
|
*> \verbatim
|
||
|
*> N is INTEGER
|
||
|
*> The number of columns of the matrices A and B. N >= 0.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] P
|
||
|
*> \verbatim
|
||
|
*> P is INTEGER
|
||
|
*> The number of rows of the matrix B. 0 <= P <= N <= M+P.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] A
|
||
|
*> \verbatim
|
||
|
*> A is REAL array, dimension (LDA,N)
|
||
|
*> On entry, the M-by-N matrix A.
|
||
|
*> On exit, the elements on and above the diagonal of the array
|
||
|
*> contain the min(M,N)-by-N upper trapezoidal matrix T.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDA
|
||
|
*> \verbatim
|
||
|
*> LDA is INTEGER
|
||
|
*> The leading dimension of the array A. LDA >= max(1,M).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] B
|
||
|
*> \verbatim
|
||
|
*> B is REAL array, dimension (LDB,N)
|
||
|
*> On entry, the P-by-N matrix B.
|
||
|
*> On exit, the upper triangle of the subarray B(1:P,N-P+1:N)
|
||
|
*> contains the P-by-P upper triangular matrix R.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDB
|
||
|
*> \verbatim
|
||
|
*> LDB is INTEGER
|
||
|
*> The leading dimension of the array B. LDB >= max(1,P).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] C
|
||
|
*> \verbatim
|
||
|
*> C is REAL array, dimension (M)
|
||
|
*> On entry, C contains the right hand side vector for the
|
||
|
*> least squares part of the LSE problem.
|
||
|
*> On exit, the residual sum of squares for the solution
|
||
|
*> is given by the sum of squares of elements N-P+1 to M of
|
||
|
*> vector C.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] D
|
||
|
*> \verbatim
|
||
|
*> D is REAL array, dimension (P)
|
||
|
*> On entry, D contains the right hand side vector for the
|
||
|
*> constrained equation.
|
||
|
*> On exit, D is destroyed.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] X
|
||
|
*> \verbatim
|
||
|
*> X is REAL array, dimension (N)
|
||
|
*> On exit, X is the solution of the LSE problem.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] WORK
|
||
|
*> \verbatim
|
||
|
*> WORK is REAL array, dimension (MAX(1,LWORK))
|
||
|
*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LWORK
|
||
|
*> \verbatim
|
||
|
*> LWORK is INTEGER
|
||
|
*> The dimension of the array WORK. LWORK >= max(1,M+N+P).
|
||
|
*> For optimum performance LWORK >= P+min(M,N)+max(M,N)*NB,
|
||
|
*> where NB is an upper bound for the optimal blocksizes for
|
||
|
*> SGEQRF, SGERQF, SORMQR and SORMRQ.
|
||
|
*>
|
||
|
*> If LWORK = -1, then a workspace query is assumed; the routine
|
||
|
*> only calculates the optimal size of the WORK array, returns
|
||
|
*> this value as the first entry of the WORK array, and no error
|
||
|
*> message related to LWORK is issued by XERBLA.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] INFO
|
||
|
*> \verbatim
|
||
|
*> INFO is INTEGER
|
||
|
*> = 0: successful exit.
|
||
|
*> < 0: if INFO = -i, the i-th argument had an illegal value.
|
||
|
*> = 1: the upper triangular factor R associated with B in the
|
||
|
*> generalized RQ factorization of the pair (B, A) is
|
||
|
*> singular, so that rank(B) < P; the least squares
|
||
|
*> solution could not be computed.
|
||
|
*> = 2: the (N-P) by (N-P) part of the upper trapezoidal factor
|
||
|
*> T associated with A in the generalized RQ factorization
|
||
|
*> of the pair (B, A) is singular, so that
|
||
|
*> rank( (A) ) < N; the least squares solution could not
|
||
|
*> ( (B) )
|
||
|
*> be computed.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Authors:
|
||
|
* ========
|
||
|
*
|
||
|
*> \author Univ. of Tennessee
|
||
|
*> \author Univ. of California Berkeley
|
||
|
*> \author Univ. of Colorado Denver
|
||
|
*> \author NAG Ltd.
|
||
|
*
|
||
|
*> \ingroup realOTHERsolve
|
||
|
*
|
||
|
* =====================================================================
|
||
|
SUBROUTINE SGGLSE( M, N, P, A, LDA, B, LDB, C, D, X, WORK, LWORK,
|
||
|
$ INFO )
|
||
|
*
|
||
|
* -- LAPACK driver routine --
|
||
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
INTEGER INFO, LDA, LDB, LWORK, M, N, P
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
REAL A( LDA, * ), B( LDB, * ), C( * ), D( * ),
|
||
|
$ WORK( * ), X( * )
|
||
|
* ..
|
||
|
*
|
||
|
* =====================================================================
|
||
|
*
|
||
|
* .. Parameters ..
|
||
|
REAL ONE
|
||
|
PARAMETER ( ONE = 1.0E+0 )
|
||
|
* ..
|
||
|
* .. Local Scalars ..
|
||
|
LOGICAL LQUERY
|
||
|
INTEGER LOPT, LWKMIN, LWKOPT, MN, NB, NB1, NB2, NB3,
|
||
|
$ NB4, NR
|
||
|
* ..
|
||
|
* .. External Subroutines ..
|
||
|
EXTERNAL SAXPY, SCOPY, SGEMV, SGGRQF, SORMQR, SORMRQ,
|
||
|
$ STRMV, STRTRS, XERBLA
|
||
|
* ..
|
||
|
* .. External Functions ..
|
||
|
INTEGER ILAENV
|
||
|
EXTERNAL ILAENV
|
||
|
* ..
|
||
|
* .. Intrinsic Functions ..
|
||
|
INTRINSIC INT, MAX, MIN
|
||
|
* ..
|
||
|
* .. Executable Statements ..
|
||
|
*
|
||
|
* Test the input parameters
|
||
|
*
|
||
|
INFO = 0
|
||
|
MN = MIN( M, N )
|
||
|
LQUERY = ( LWORK.EQ.-1 )
|
||
|
IF( M.LT.0 ) THEN
|
||
|
INFO = -1
|
||
|
ELSE IF( N.LT.0 ) THEN
|
||
|
INFO = -2
|
||
|
ELSE IF( P.LT.0 .OR. P.GT.N .OR. P.LT.N-M ) THEN
|
||
|
INFO = -3
|
||
|
ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
|
||
|
INFO = -5
|
||
|
ELSE IF( LDB.LT.MAX( 1, P ) ) THEN
|
||
|
INFO = -7
|
||
|
END IF
|
||
|
*
|
||
|
* Calculate workspace
|
||
|
*
|
||
|
IF( INFO.EQ.0) THEN
|
||
|
IF( N.EQ.0 ) THEN
|
||
|
LWKMIN = 1
|
||
|
LWKOPT = 1
|
||
|
ELSE
|
||
|
NB1 = ILAENV( 1, 'SGEQRF', ' ', M, N, -1, -1 )
|
||
|
NB2 = ILAENV( 1, 'SGERQF', ' ', M, N, -1, -1 )
|
||
|
NB3 = ILAENV( 1, 'SORMQR', ' ', M, N, P, -1 )
|
||
|
NB4 = ILAENV( 1, 'SORMRQ', ' ', M, N, P, -1 )
|
||
|
NB = MAX( NB1, NB2, NB3, NB4 )
|
||
|
LWKMIN = M + N + P
|
||
|
LWKOPT = P + MN + MAX( M, N )*NB
|
||
|
END IF
|
||
|
WORK( 1 ) = LWKOPT
|
||
|
*
|
||
|
IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY ) THEN
|
||
|
INFO = -12
|
||
|
END IF
|
||
|
END IF
|
||
|
*
|
||
|
IF( INFO.NE.0 ) THEN
|
||
|
CALL XERBLA( 'SGGLSE', -INFO )
|
||
|
RETURN
|
||
|
ELSE IF( LQUERY ) THEN
|
||
|
RETURN
|
||
|
END IF
|
||
|
*
|
||
|
* Quick return if possible
|
||
|
*
|
||
|
IF( N.EQ.0 )
|
||
|
$ RETURN
|
||
|
*
|
||
|
* Compute the GRQ factorization of matrices B and A:
|
||
|
*
|
||
|
* B*Q**T = ( 0 T12 ) P Z**T*A*Q**T = ( R11 R12 ) N-P
|
||
|
* N-P P ( 0 R22 ) M+P-N
|
||
|
* N-P P
|
||
|
*
|
||
|
* where T12 and R11 are upper triangular, and Q and Z are
|
||
|
* orthogonal.
|
||
|
*
|
||
|
CALL SGGRQF( P, M, N, B, LDB, WORK, A, LDA, WORK( P+1 ),
|
||
|
$ WORK( P+MN+1 ), LWORK-P-MN, INFO )
|
||
|
LOPT = INT( WORK( P+MN+1 ) )
|
||
|
*
|
||
|
* Update c = Z**T *c = ( c1 ) N-P
|
||
|
* ( c2 ) M+P-N
|
||
|
*
|
||
|
CALL SORMQR( 'Left', 'Transpose', M, 1, MN, A, LDA, WORK( P+1 ),
|
||
|
$ C, MAX( 1, M ), WORK( P+MN+1 ), LWORK-P-MN, INFO )
|
||
|
LOPT = MAX( LOPT, INT( WORK( P+MN+1 ) ) )
|
||
|
*
|
||
|
* Solve T12*x2 = d for x2
|
||
|
*
|
||
|
IF( P.GT.0 ) THEN
|
||
|
CALL STRTRS( 'Upper', 'No transpose', 'Non-unit', P, 1,
|
||
|
$ B( 1, N-P+1 ), LDB, D, P, INFO )
|
||
|
*
|
||
|
IF( INFO.GT.0 ) THEN
|
||
|
INFO = 1
|
||
|
RETURN
|
||
|
END IF
|
||
|
*
|
||
|
* Put the solution in X
|
||
|
*
|
||
|
CALL SCOPY( P, D, 1, X( N-P+1 ), 1 )
|
||
|
*
|
||
|
* Update c1
|
||
|
*
|
||
|
CALL SGEMV( 'No transpose', N-P, P, -ONE, A( 1, N-P+1 ), LDA,
|
||
|
$ D, 1, ONE, C, 1 )
|
||
|
END IF
|
||
|
*
|
||
|
* Solve R11*x1 = c1 for x1
|
||
|
*
|
||
|
IF( N.GT.P ) THEN
|
||
|
CALL STRTRS( 'Upper', 'No transpose', 'Non-unit', N-P, 1,
|
||
|
$ A, LDA, C, N-P, INFO )
|
||
|
*
|
||
|
IF( INFO.GT.0 ) THEN
|
||
|
INFO = 2
|
||
|
RETURN
|
||
|
END IF
|
||
|
*
|
||
|
* Put the solutions in X
|
||
|
*
|
||
|
CALL SCOPY( N-P, C, 1, X, 1 )
|
||
|
END IF
|
||
|
*
|
||
|
* Compute the residual vector:
|
||
|
*
|
||
|
IF( M.LT.N ) THEN
|
||
|
NR = M + P - N
|
||
|
IF( NR.GT.0 )
|
||
|
$ CALL SGEMV( 'No transpose', NR, N-M, -ONE, A( N-P+1, M+1 ),
|
||
|
$ LDA, D( NR+1 ), 1, ONE, C( N-P+1 ), 1 )
|
||
|
ELSE
|
||
|
NR = P
|
||
|
END IF
|
||
|
IF( NR.GT.0 ) THEN
|
||
|
CALL STRMV( 'Upper', 'No transpose', 'Non unit', NR,
|
||
|
$ A( N-P+1, N-P+1 ), LDA, D, 1 )
|
||
|
CALL SAXPY( NR, -ONE, D, 1, C( N-P+1 ), 1 )
|
||
|
END IF
|
||
|
*
|
||
|
* Backward transformation x = Q**T*x
|
||
|
*
|
||
|
CALL SORMRQ( 'Left', 'Transpose', N, 1, P, B, LDB, WORK( 1 ), X,
|
||
|
$ N, WORK( P+MN+1 ), LWORK-P-MN, INFO )
|
||
|
WORK( 1 ) = P + MN + MAX( LOPT, INT( WORK( P+MN+1 ) ) )
|
||
|
*
|
||
|
RETURN
|
||
|
*
|
||
|
* End of SGGLSE
|
||
|
*
|
||
|
END
|