You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
569 lines
15 KiB
569 lines
15 KiB
2 years ago
|
*> \brief \b SGGSVP3
|
||
|
*
|
||
|
* =========== DOCUMENTATION ===========
|
||
|
*
|
||
|
* Online html documentation available at
|
||
|
* http://www.netlib.org/lapack/explore-html/
|
||
|
*
|
||
|
*> \htmlonly
|
||
|
*> Download SGGSVP3 + dependencies
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sggsvp3.f">
|
||
|
*> [TGZ]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sggsvp3.f">
|
||
|
*> [ZIP]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sggsvp3.f">
|
||
|
*> [TXT]</a>
|
||
|
*> \endhtmlonly
|
||
|
*
|
||
|
* Definition:
|
||
|
* ===========
|
||
|
*
|
||
|
* SUBROUTINE SGGSVP3( JOBU, JOBV, JOBQ, M, P, N, A, LDA, B, LDB,
|
||
|
* TOLA, TOLB, K, L, U, LDU, V, LDV, Q, LDQ,
|
||
|
* IWORK, TAU, WORK, LWORK, INFO )
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
* CHARACTER JOBQ, JOBU, JOBV
|
||
|
* INTEGER INFO, K, L, LDA, LDB, LDQ, LDU, LDV, M, N, P, LWORK
|
||
|
* REAL TOLA, TOLB
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
* INTEGER IWORK( * )
|
||
|
* REAL A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
|
||
|
* $ TAU( * ), U( LDU, * ), V( LDV, * ), WORK( * )
|
||
|
* ..
|
||
|
*
|
||
|
*
|
||
|
*> \par Purpose:
|
||
|
* =============
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*> SGGSVP3 computes orthogonal matrices U, V and Q such that
|
||
|
*>
|
||
|
*> N-K-L K L
|
||
|
*> U**T*A*Q = K ( 0 A12 A13 ) if M-K-L >= 0;
|
||
|
*> L ( 0 0 A23 )
|
||
|
*> M-K-L ( 0 0 0 )
|
||
|
*>
|
||
|
*> N-K-L K L
|
||
|
*> = K ( 0 A12 A13 ) if M-K-L < 0;
|
||
|
*> M-K ( 0 0 A23 )
|
||
|
*>
|
||
|
*> N-K-L K L
|
||
|
*> V**T*B*Q = L ( 0 0 B13 )
|
||
|
*> P-L ( 0 0 0 )
|
||
|
*>
|
||
|
*> where the K-by-K matrix A12 and L-by-L matrix B13 are nonsingular
|
||
|
*> upper triangular; A23 is L-by-L upper triangular if M-K-L >= 0,
|
||
|
*> otherwise A23 is (M-K)-by-L upper trapezoidal. K+L = the effective
|
||
|
*> numerical rank of the (M+P)-by-N matrix (A**T,B**T)**T.
|
||
|
*>
|
||
|
*> This decomposition is the preprocessing step for computing the
|
||
|
*> Generalized Singular Value Decomposition (GSVD), see subroutine
|
||
|
*> SGGSVD3.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Arguments:
|
||
|
* ==========
|
||
|
*
|
||
|
*> \param[in] JOBU
|
||
|
*> \verbatim
|
||
|
*> JOBU is CHARACTER*1
|
||
|
*> = 'U': Orthogonal matrix U is computed;
|
||
|
*> = 'N': U is not computed.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] JOBV
|
||
|
*> \verbatim
|
||
|
*> JOBV is CHARACTER*1
|
||
|
*> = 'V': Orthogonal matrix V is computed;
|
||
|
*> = 'N': V is not computed.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] JOBQ
|
||
|
*> \verbatim
|
||
|
*> JOBQ is CHARACTER*1
|
||
|
*> = 'Q': Orthogonal matrix Q is computed;
|
||
|
*> = 'N': Q is not computed.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] M
|
||
|
*> \verbatim
|
||
|
*> M is INTEGER
|
||
|
*> The number of rows of the matrix A. M >= 0.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] P
|
||
|
*> \verbatim
|
||
|
*> P is INTEGER
|
||
|
*> The number of rows of the matrix B. P >= 0.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] N
|
||
|
*> \verbatim
|
||
|
*> N is INTEGER
|
||
|
*> The number of columns of the matrices A and B. N >= 0.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] A
|
||
|
*> \verbatim
|
||
|
*> A is REAL array, dimension (LDA,N)
|
||
|
*> On entry, the M-by-N matrix A.
|
||
|
*> On exit, A contains the triangular (or trapezoidal) matrix
|
||
|
*> described in the Purpose section.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDA
|
||
|
*> \verbatim
|
||
|
*> LDA is INTEGER
|
||
|
*> The leading dimension of the array A. LDA >= max(1,M).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] B
|
||
|
*> \verbatim
|
||
|
*> B is REAL array, dimension (LDB,N)
|
||
|
*> On entry, the P-by-N matrix B.
|
||
|
*> On exit, B contains the triangular matrix described in
|
||
|
*> the Purpose section.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDB
|
||
|
*> \verbatim
|
||
|
*> LDB is INTEGER
|
||
|
*> The leading dimension of the array B. LDB >= max(1,P).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] TOLA
|
||
|
*> \verbatim
|
||
|
*> TOLA is REAL
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] TOLB
|
||
|
*> \verbatim
|
||
|
*> TOLB is REAL
|
||
|
*>
|
||
|
*> TOLA and TOLB are the thresholds to determine the effective
|
||
|
*> numerical rank of matrix B and a subblock of A. Generally,
|
||
|
*> they are set to
|
||
|
*> TOLA = MAX(M,N)*norm(A)*MACHEPS,
|
||
|
*> TOLB = MAX(P,N)*norm(B)*MACHEPS.
|
||
|
*> The size of TOLA and TOLB may affect the size of backward
|
||
|
*> errors of the decomposition.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] K
|
||
|
*> \verbatim
|
||
|
*> K is INTEGER
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] L
|
||
|
*> \verbatim
|
||
|
*> L is INTEGER
|
||
|
*>
|
||
|
*> On exit, K and L specify the dimension of the subblocks
|
||
|
*> described in Purpose section.
|
||
|
*> K + L = effective numerical rank of (A**T,B**T)**T.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] U
|
||
|
*> \verbatim
|
||
|
*> U is REAL array, dimension (LDU,M)
|
||
|
*> If JOBU = 'U', U contains the orthogonal matrix U.
|
||
|
*> If JOBU = 'N', U is not referenced.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDU
|
||
|
*> \verbatim
|
||
|
*> LDU is INTEGER
|
||
|
*> The leading dimension of the array U. LDU >= max(1,M) if
|
||
|
*> JOBU = 'U'; LDU >= 1 otherwise.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] V
|
||
|
*> \verbatim
|
||
|
*> V is REAL array, dimension (LDV,P)
|
||
|
*> If JOBV = 'V', V contains the orthogonal matrix V.
|
||
|
*> If JOBV = 'N', V is not referenced.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDV
|
||
|
*> \verbatim
|
||
|
*> LDV is INTEGER
|
||
|
*> The leading dimension of the array V. LDV >= max(1,P) if
|
||
|
*> JOBV = 'V'; LDV >= 1 otherwise.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] Q
|
||
|
*> \verbatim
|
||
|
*> Q is REAL array, dimension (LDQ,N)
|
||
|
*> If JOBQ = 'Q', Q contains the orthogonal matrix Q.
|
||
|
*> If JOBQ = 'N', Q is not referenced.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDQ
|
||
|
*> \verbatim
|
||
|
*> LDQ is INTEGER
|
||
|
*> The leading dimension of the array Q. LDQ >= max(1,N) if
|
||
|
*> JOBQ = 'Q'; LDQ >= 1 otherwise.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] IWORK
|
||
|
*> \verbatim
|
||
|
*> IWORK is INTEGER array, dimension (N)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] TAU
|
||
|
*> \verbatim
|
||
|
*> TAU is REAL array, dimension (N)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] WORK
|
||
|
*> \verbatim
|
||
|
*> WORK is REAL array, dimension (MAX(1,LWORK))
|
||
|
*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LWORK
|
||
|
*> \verbatim
|
||
|
*> LWORK is INTEGER
|
||
|
*> The dimension of the array WORK.
|
||
|
*>
|
||
|
*> If LWORK = -1, then a workspace query is assumed; the routine
|
||
|
*> only calculates the optimal size of the WORK array, returns
|
||
|
*> this value as the first entry of the WORK array, and no error
|
||
|
*> message related to LWORK is issued by XERBLA.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] INFO
|
||
|
*> \verbatim
|
||
|
*> INFO is INTEGER
|
||
|
*> = 0: successful exit
|
||
|
*> < 0: if INFO = -i, the i-th argument had an illegal value.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Authors:
|
||
|
* ========
|
||
|
*
|
||
|
*> \author Univ. of Tennessee
|
||
|
*> \author Univ. of California Berkeley
|
||
|
*> \author Univ. of Colorado Denver
|
||
|
*> \author NAG Ltd.
|
||
|
*
|
||
|
*> \ingroup realOTHERcomputational
|
||
|
*
|
||
|
*> \par Further Details:
|
||
|
* =====================
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*> The subroutine uses LAPACK subroutine SGEQP3 for the QR factorization
|
||
|
*> with column pivoting to detect the effective numerical rank of the
|
||
|
*> a matrix. It may be replaced by a better rank determination strategy.
|
||
|
*>
|
||
|
*> SGGSVP3 replaces the deprecated subroutine SGGSVP.
|
||
|
*>
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
* =====================================================================
|
||
|
SUBROUTINE SGGSVP3( JOBU, JOBV, JOBQ, M, P, N, A, LDA, B, LDB,
|
||
|
$ TOLA, TOLB, K, L, U, LDU, V, LDV, Q, LDQ,
|
||
|
$ IWORK, TAU, WORK, LWORK, INFO )
|
||
|
*
|
||
|
* -- LAPACK computational routine --
|
||
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||
|
*
|
||
|
IMPLICIT NONE
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
CHARACTER JOBQ, JOBU, JOBV
|
||
|
INTEGER INFO, K, L, LDA, LDB, LDQ, LDU, LDV, M, N, P,
|
||
|
$ LWORK
|
||
|
REAL TOLA, TOLB
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
INTEGER IWORK( * )
|
||
|
REAL A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
|
||
|
$ TAU( * ), U( LDU, * ), V( LDV, * ), WORK( * )
|
||
|
* ..
|
||
|
*
|
||
|
* =====================================================================
|
||
|
*
|
||
|
* .. Parameters ..
|
||
|
REAL ZERO, ONE
|
||
|
PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
|
||
|
* ..
|
||
|
* .. Local Scalars ..
|
||
|
LOGICAL FORWRD, WANTQ, WANTU, WANTV, LQUERY
|
||
|
INTEGER I, J, LWKOPT
|
||
|
* ..
|
||
|
* .. External Functions ..
|
||
|
LOGICAL LSAME
|
||
|
EXTERNAL LSAME
|
||
|
* ..
|
||
|
* .. External Subroutines ..
|
||
|
EXTERNAL SGEQP3, SGEQR2, SGERQ2, SLACPY, SLAPMT,
|
||
|
$ SLASET, SORG2R, SORM2R, SORMR2, XERBLA
|
||
|
* ..
|
||
|
* .. Intrinsic Functions ..
|
||
|
INTRINSIC ABS, MAX, MIN
|
||
|
* ..
|
||
|
* .. Executable Statements ..
|
||
|
*
|
||
|
* Test the input parameters
|
||
|
*
|
||
|
WANTU = LSAME( JOBU, 'U' )
|
||
|
WANTV = LSAME( JOBV, 'V' )
|
||
|
WANTQ = LSAME( JOBQ, 'Q' )
|
||
|
FORWRD = .TRUE.
|
||
|
LQUERY = ( LWORK.EQ.-1 )
|
||
|
LWKOPT = 1
|
||
|
*
|
||
|
* Test the input arguments
|
||
|
*
|
||
|
INFO = 0
|
||
|
IF( .NOT.( WANTU .OR. LSAME( JOBU, 'N' ) ) ) THEN
|
||
|
INFO = -1
|
||
|
ELSE IF( .NOT.( WANTV .OR. LSAME( JOBV, 'N' ) ) ) THEN
|
||
|
INFO = -2
|
||
|
ELSE IF( .NOT.( WANTQ .OR. LSAME( JOBQ, 'N' ) ) ) THEN
|
||
|
INFO = -3
|
||
|
ELSE IF( M.LT.0 ) THEN
|
||
|
INFO = -4
|
||
|
ELSE IF( P.LT.0 ) THEN
|
||
|
INFO = -5
|
||
|
ELSE IF( N.LT.0 ) THEN
|
||
|
INFO = -6
|
||
|
ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
|
||
|
INFO = -8
|
||
|
ELSE IF( LDB.LT.MAX( 1, P ) ) THEN
|
||
|
INFO = -10
|
||
|
ELSE IF( LDU.LT.1 .OR. ( WANTU .AND. LDU.LT.M ) ) THEN
|
||
|
INFO = -16
|
||
|
ELSE IF( LDV.LT.1 .OR. ( WANTV .AND. LDV.LT.P ) ) THEN
|
||
|
INFO = -18
|
||
|
ELSE IF( LDQ.LT.1 .OR. ( WANTQ .AND. LDQ.LT.N ) ) THEN
|
||
|
INFO = -20
|
||
|
ELSE IF( LWORK.LT.1 .AND. .NOT.LQUERY ) THEN
|
||
|
INFO = -24
|
||
|
END IF
|
||
|
*
|
||
|
* Compute workspace
|
||
|
*
|
||
|
IF( INFO.EQ.0 ) THEN
|
||
|
CALL SGEQP3( P, N, B, LDB, IWORK, TAU, WORK, -1, INFO )
|
||
|
LWKOPT = INT( WORK ( 1 ) )
|
||
|
IF( WANTV ) THEN
|
||
|
LWKOPT = MAX( LWKOPT, P )
|
||
|
END IF
|
||
|
LWKOPT = MAX( LWKOPT, MIN( N, P ) )
|
||
|
LWKOPT = MAX( LWKOPT, M )
|
||
|
IF( WANTQ ) THEN
|
||
|
LWKOPT = MAX( LWKOPT, N )
|
||
|
END IF
|
||
|
CALL SGEQP3( M, N, A, LDA, IWORK, TAU, WORK, -1, INFO )
|
||
|
LWKOPT = MAX( LWKOPT, INT( WORK ( 1 ) ) )
|
||
|
LWKOPT = MAX( 1, LWKOPT )
|
||
|
WORK( 1 ) = REAL( LWKOPT )
|
||
|
END IF
|
||
|
*
|
||
|
IF( INFO.NE.0 ) THEN
|
||
|
CALL XERBLA( 'SGGSVP3', -INFO )
|
||
|
RETURN
|
||
|
END IF
|
||
|
IF( LQUERY ) THEN
|
||
|
RETURN
|
||
|
ENDIF
|
||
|
*
|
||
|
* QR with column pivoting of B: B*P = V*( S11 S12 )
|
||
|
* ( 0 0 )
|
||
|
*
|
||
|
DO 10 I = 1, N
|
||
|
IWORK( I ) = 0
|
||
|
10 CONTINUE
|
||
|
CALL SGEQP3( P, N, B, LDB, IWORK, TAU, WORK, LWORK, INFO )
|
||
|
*
|
||
|
* Update A := A*P
|
||
|
*
|
||
|
CALL SLAPMT( FORWRD, M, N, A, LDA, IWORK )
|
||
|
*
|
||
|
* Determine the effective rank of matrix B.
|
||
|
*
|
||
|
L = 0
|
||
|
DO 20 I = 1, MIN( P, N )
|
||
|
IF( ABS( B( I, I ) ).GT.TOLB )
|
||
|
$ L = L + 1
|
||
|
20 CONTINUE
|
||
|
*
|
||
|
IF( WANTV ) THEN
|
||
|
*
|
||
|
* Copy the details of V, and form V.
|
||
|
*
|
||
|
CALL SLASET( 'Full', P, P, ZERO, ZERO, V, LDV )
|
||
|
IF( P.GT.1 )
|
||
|
$ CALL SLACPY( 'Lower', P-1, N, B( 2, 1 ), LDB, V( 2, 1 ),
|
||
|
$ LDV )
|
||
|
CALL SORG2R( P, P, MIN( P, N ), V, LDV, TAU, WORK, INFO )
|
||
|
END IF
|
||
|
*
|
||
|
* Clean up B
|
||
|
*
|
||
|
DO 40 J = 1, L - 1
|
||
|
DO 30 I = J + 1, L
|
||
|
B( I, J ) = ZERO
|
||
|
30 CONTINUE
|
||
|
40 CONTINUE
|
||
|
IF( P.GT.L )
|
||
|
$ CALL SLASET( 'Full', P-L, N, ZERO, ZERO, B( L+1, 1 ), LDB )
|
||
|
*
|
||
|
IF( WANTQ ) THEN
|
||
|
*
|
||
|
* Set Q = I and Update Q := Q*P
|
||
|
*
|
||
|
CALL SLASET( 'Full', N, N, ZERO, ONE, Q, LDQ )
|
||
|
CALL SLAPMT( FORWRD, N, N, Q, LDQ, IWORK )
|
||
|
END IF
|
||
|
*
|
||
|
IF( P.GE.L .AND. N.NE.L ) THEN
|
||
|
*
|
||
|
* RQ factorization of (S11 S12): ( S11 S12 ) = ( 0 S12 )*Z
|
||
|
*
|
||
|
CALL SGERQ2( L, N, B, LDB, TAU, WORK, INFO )
|
||
|
*
|
||
|
* Update A := A*Z**T
|
||
|
*
|
||
|
CALL SORMR2( 'Right', 'Transpose', M, N, L, B, LDB, TAU, A,
|
||
|
$ LDA, WORK, INFO )
|
||
|
*
|
||
|
IF( WANTQ ) THEN
|
||
|
*
|
||
|
* Update Q := Q*Z**T
|
||
|
*
|
||
|
CALL SORMR2( 'Right', 'Transpose', N, N, L, B, LDB, TAU, Q,
|
||
|
$ LDQ, WORK, INFO )
|
||
|
END IF
|
||
|
*
|
||
|
* Clean up B
|
||
|
*
|
||
|
CALL SLASET( 'Full', L, N-L, ZERO, ZERO, B, LDB )
|
||
|
DO 60 J = N - L + 1, N
|
||
|
DO 50 I = J - N + L + 1, L
|
||
|
B( I, J ) = ZERO
|
||
|
50 CONTINUE
|
||
|
60 CONTINUE
|
||
|
*
|
||
|
END IF
|
||
|
*
|
||
|
* Let N-L L
|
||
|
* A = ( A11 A12 ) M,
|
||
|
*
|
||
|
* then the following does the complete QR decomposition of A11:
|
||
|
*
|
||
|
* A11 = U*( 0 T12 )*P1**T
|
||
|
* ( 0 0 )
|
||
|
*
|
||
|
DO 70 I = 1, N - L
|
||
|
IWORK( I ) = 0
|
||
|
70 CONTINUE
|
||
|
CALL SGEQP3( M, N-L, A, LDA, IWORK, TAU, WORK, LWORK, INFO )
|
||
|
*
|
||
|
* Determine the effective rank of A11
|
||
|
*
|
||
|
K = 0
|
||
|
DO 80 I = 1, MIN( M, N-L )
|
||
|
IF( ABS( A( I, I ) ).GT.TOLA )
|
||
|
$ K = K + 1
|
||
|
80 CONTINUE
|
||
|
*
|
||
|
* Update A12 := U**T*A12, where A12 = A( 1:M, N-L+1:N )
|
||
|
*
|
||
|
CALL SORM2R( 'Left', 'Transpose', M, L, MIN( M, N-L ), A, LDA,
|
||
|
$ TAU, A( 1, N-L+1 ), LDA, WORK, INFO )
|
||
|
*
|
||
|
IF( WANTU ) THEN
|
||
|
*
|
||
|
* Copy the details of U, and form U
|
||
|
*
|
||
|
CALL SLASET( 'Full', M, M, ZERO, ZERO, U, LDU )
|
||
|
IF( M.GT.1 )
|
||
|
$ CALL SLACPY( 'Lower', M-1, N-L, A( 2, 1 ), LDA, U( 2, 1 ),
|
||
|
$ LDU )
|
||
|
CALL SORG2R( M, M, MIN( M, N-L ), U, LDU, TAU, WORK, INFO )
|
||
|
END IF
|
||
|
*
|
||
|
IF( WANTQ ) THEN
|
||
|
*
|
||
|
* Update Q( 1:N, 1:N-L ) = Q( 1:N, 1:N-L )*P1
|
||
|
*
|
||
|
CALL SLAPMT( FORWRD, N, N-L, Q, LDQ, IWORK )
|
||
|
END IF
|
||
|
*
|
||
|
* Clean up A: set the strictly lower triangular part of
|
||
|
* A(1:K, 1:K) = 0, and A( K+1:M, 1:N-L ) = 0.
|
||
|
*
|
||
|
DO 100 J = 1, K - 1
|
||
|
DO 90 I = J + 1, K
|
||
|
A( I, J ) = ZERO
|
||
|
90 CONTINUE
|
||
|
100 CONTINUE
|
||
|
IF( M.GT.K )
|
||
|
$ CALL SLASET( 'Full', M-K, N-L, ZERO, ZERO, A( K+1, 1 ), LDA )
|
||
|
*
|
||
|
IF( N-L.GT.K ) THEN
|
||
|
*
|
||
|
* RQ factorization of ( T11 T12 ) = ( 0 T12 )*Z1
|
||
|
*
|
||
|
CALL SGERQ2( K, N-L, A, LDA, TAU, WORK, INFO )
|
||
|
*
|
||
|
IF( WANTQ ) THEN
|
||
|
*
|
||
|
* Update Q( 1:N,1:N-L ) = Q( 1:N,1:N-L )*Z1**T
|
||
|
*
|
||
|
CALL SORMR2( 'Right', 'Transpose', N, N-L, K, A, LDA, TAU,
|
||
|
$ Q, LDQ, WORK, INFO )
|
||
|
END IF
|
||
|
*
|
||
|
* Clean up A
|
||
|
*
|
||
|
CALL SLASET( 'Full', K, N-L-K, ZERO, ZERO, A, LDA )
|
||
|
DO 120 J = N - L - K + 1, N - L
|
||
|
DO 110 I = J - N + L + K + 1, K
|
||
|
A( I, J ) = ZERO
|
||
|
110 CONTINUE
|
||
|
120 CONTINUE
|
||
|
*
|
||
|
END IF
|
||
|
*
|
||
|
IF( M.GT.K ) THEN
|
||
|
*
|
||
|
* QR factorization of A( K+1:M,N-L+1:N )
|
||
|
*
|
||
|
CALL SGEQR2( M-K, L, A( K+1, N-L+1 ), LDA, TAU, WORK, INFO )
|
||
|
*
|
||
|
IF( WANTU ) THEN
|
||
|
*
|
||
|
* Update U(:,K+1:M) := U(:,K+1:M)*U1
|
||
|
*
|
||
|
CALL SORM2R( 'Right', 'No transpose', M, M-K, MIN( M-K, L ),
|
||
|
$ A( K+1, N-L+1 ), LDA, TAU, U( 1, K+1 ), LDU,
|
||
|
$ WORK, INFO )
|
||
|
END IF
|
||
|
*
|
||
|
* Clean up
|
||
|
*
|
||
|
DO 140 J = N - L + 1, N
|
||
|
DO 130 I = J - N + K + L + 1, M
|
||
|
A( I, J ) = ZERO
|
||
|
130 CONTINUE
|
||
|
140 CONTINUE
|
||
|
*
|
||
|
END IF
|
||
|
*
|
||
|
WORK( 1 ) = REAL( LWKOPT )
|
||
|
RETURN
|
||
|
*
|
||
|
* End of SGGSVP3
|
||
|
*
|
||
|
END
|