You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
253 lines
6.7 KiB
253 lines
6.7 KiB
2 years ago
|
*> \brief \b SGTCON
|
||
|
*
|
||
|
* =========== DOCUMENTATION ===========
|
||
|
*
|
||
|
* Online html documentation available at
|
||
|
* http://www.netlib.org/lapack/explore-html/
|
||
|
*
|
||
|
*> \htmlonly
|
||
|
*> Download SGTCON + dependencies
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sgtcon.f">
|
||
|
*> [TGZ]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sgtcon.f">
|
||
|
*> [ZIP]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sgtcon.f">
|
||
|
*> [TXT]</a>
|
||
|
*> \endhtmlonly
|
||
|
*
|
||
|
* Definition:
|
||
|
* ===========
|
||
|
*
|
||
|
* SUBROUTINE SGTCON( NORM, N, DL, D, DU, DU2, IPIV, ANORM, RCOND,
|
||
|
* WORK, IWORK, INFO )
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
* CHARACTER NORM
|
||
|
* INTEGER INFO, N
|
||
|
* REAL ANORM, RCOND
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
* INTEGER IPIV( * ), IWORK( * )
|
||
|
* REAL D( * ), DL( * ), DU( * ), DU2( * ), WORK( * )
|
||
|
* ..
|
||
|
*
|
||
|
*
|
||
|
*> \par Purpose:
|
||
|
* =============
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*> SGTCON estimates the reciprocal of the condition number of a real
|
||
|
*> tridiagonal matrix A using the LU factorization as computed by
|
||
|
*> SGTTRF.
|
||
|
*>
|
||
|
*> An estimate is obtained for norm(inv(A)), and the reciprocal of the
|
||
|
*> condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))).
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Arguments:
|
||
|
* ==========
|
||
|
*
|
||
|
*> \param[in] NORM
|
||
|
*> \verbatim
|
||
|
*> NORM is CHARACTER*1
|
||
|
*> Specifies whether the 1-norm condition number or the
|
||
|
*> infinity-norm condition number is required:
|
||
|
*> = '1' or 'O': 1-norm;
|
||
|
*> = 'I': Infinity-norm.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] N
|
||
|
*> \verbatim
|
||
|
*> N is INTEGER
|
||
|
*> The order of the matrix A. N >= 0.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] DL
|
||
|
*> \verbatim
|
||
|
*> DL is REAL array, dimension (N-1)
|
||
|
*> The (n-1) multipliers that define the matrix L from the
|
||
|
*> LU factorization of A as computed by SGTTRF.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] D
|
||
|
*> \verbatim
|
||
|
*> D is REAL array, dimension (N)
|
||
|
*> The n diagonal elements of the upper triangular matrix U from
|
||
|
*> the LU factorization of A.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] DU
|
||
|
*> \verbatim
|
||
|
*> DU is REAL array, dimension (N-1)
|
||
|
*> The (n-1) elements of the first superdiagonal of U.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] DU2
|
||
|
*> \verbatim
|
||
|
*> DU2 is REAL array, dimension (N-2)
|
||
|
*> The (n-2) elements of the second superdiagonal of U.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] IPIV
|
||
|
*> \verbatim
|
||
|
*> IPIV is INTEGER array, dimension (N)
|
||
|
*> The pivot indices; for 1 <= i <= n, row i of the matrix was
|
||
|
*> interchanged with row IPIV(i). IPIV(i) will always be either
|
||
|
*> i or i+1; IPIV(i) = i indicates a row interchange was not
|
||
|
*> required.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] ANORM
|
||
|
*> \verbatim
|
||
|
*> ANORM is REAL
|
||
|
*> If NORM = '1' or 'O', the 1-norm of the original matrix A.
|
||
|
*> If NORM = 'I', the infinity-norm of the original matrix A.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] RCOND
|
||
|
*> \verbatim
|
||
|
*> RCOND is REAL
|
||
|
*> The reciprocal of the condition number of the matrix A,
|
||
|
*> computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is an
|
||
|
*> estimate of the 1-norm of inv(A) computed in this routine.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] WORK
|
||
|
*> \verbatim
|
||
|
*> WORK is REAL array, dimension (2*N)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] IWORK
|
||
|
*> \verbatim
|
||
|
*> IWORK is INTEGER array, dimension (N)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] INFO
|
||
|
*> \verbatim
|
||
|
*> INFO is INTEGER
|
||
|
*> = 0: successful exit
|
||
|
*> < 0: if INFO = -i, the i-th argument had an illegal value
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Authors:
|
||
|
* ========
|
||
|
*
|
||
|
*> \author Univ. of Tennessee
|
||
|
*> \author Univ. of California Berkeley
|
||
|
*> \author Univ. of Colorado Denver
|
||
|
*> \author NAG Ltd.
|
||
|
*
|
||
|
*> \ingroup realGTcomputational
|
||
|
*
|
||
|
* =====================================================================
|
||
|
SUBROUTINE SGTCON( NORM, N, DL, D, DU, DU2, IPIV, ANORM, RCOND,
|
||
|
$ WORK, IWORK, INFO )
|
||
|
*
|
||
|
* -- LAPACK computational routine --
|
||
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
CHARACTER NORM
|
||
|
INTEGER INFO, N
|
||
|
REAL ANORM, RCOND
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
INTEGER IPIV( * ), IWORK( * )
|
||
|
REAL D( * ), DL( * ), DU( * ), DU2( * ), WORK( * )
|
||
|
* ..
|
||
|
*
|
||
|
* =====================================================================
|
||
|
*
|
||
|
* .. Parameters ..
|
||
|
REAL ONE, ZERO
|
||
|
PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
|
||
|
* ..
|
||
|
* .. Local Scalars ..
|
||
|
LOGICAL ONENRM
|
||
|
INTEGER I, KASE, KASE1
|
||
|
REAL AINVNM
|
||
|
* ..
|
||
|
* .. Local Arrays ..
|
||
|
INTEGER ISAVE( 3 )
|
||
|
* ..
|
||
|
* .. External Functions ..
|
||
|
LOGICAL LSAME
|
||
|
EXTERNAL LSAME
|
||
|
* ..
|
||
|
* .. External Subroutines ..
|
||
|
EXTERNAL SGTTRS, SLACN2, XERBLA
|
||
|
* ..
|
||
|
* .. Executable Statements ..
|
||
|
*
|
||
|
* Test the input arguments.
|
||
|
*
|
||
|
INFO = 0
|
||
|
ONENRM = NORM.EQ.'1' .OR. LSAME( NORM, 'O' )
|
||
|
IF( .NOT.ONENRM .AND. .NOT.LSAME( NORM, 'I' ) ) THEN
|
||
|
INFO = -1
|
||
|
ELSE IF( N.LT.0 ) THEN
|
||
|
INFO = -2
|
||
|
ELSE IF( ANORM.LT.ZERO ) THEN
|
||
|
INFO = -8
|
||
|
END IF
|
||
|
IF( INFO.NE.0 ) THEN
|
||
|
CALL XERBLA( 'SGTCON', -INFO )
|
||
|
RETURN
|
||
|
END IF
|
||
|
*
|
||
|
* Quick return if possible
|
||
|
*
|
||
|
RCOND = ZERO
|
||
|
IF( N.EQ.0 ) THEN
|
||
|
RCOND = ONE
|
||
|
RETURN
|
||
|
ELSE IF( ANORM.EQ.ZERO ) THEN
|
||
|
RETURN
|
||
|
END IF
|
||
|
*
|
||
|
* Check that D(1:N) is non-zero.
|
||
|
*
|
||
|
DO 10 I = 1, N
|
||
|
IF( D( I ).EQ.ZERO )
|
||
|
$ RETURN
|
||
|
10 CONTINUE
|
||
|
*
|
||
|
AINVNM = ZERO
|
||
|
IF( ONENRM ) THEN
|
||
|
KASE1 = 1
|
||
|
ELSE
|
||
|
KASE1 = 2
|
||
|
END IF
|
||
|
KASE = 0
|
||
|
20 CONTINUE
|
||
|
CALL SLACN2( N, WORK( N+1 ), WORK, IWORK, AINVNM, KASE, ISAVE )
|
||
|
IF( KASE.NE.0 ) THEN
|
||
|
IF( KASE.EQ.KASE1 ) THEN
|
||
|
*
|
||
|
* Multiply by inv(U)*inv(L).
|
||
|
*
|
||
|
CALL SGTTRS( 'No transpose', N, 1, DL, D, DU, DU2, IPIV,
|
||
|
$ WORK, N, INFO )
|
||
|
ELSE
|
||
|
*
|
||
|
* Multiply by inv(L**T)*inv(U**T).
|
||
|
*
|
||
|
CALL SGTTRS( 'Transpose', N, 1, DL, D, DU, DU2, IPIV, WORK,
|
||
|
$ N, INFO )
|
||
|
END IF
|
||
|
GO TO 20
|
||
|
END IF
|
||
|
*
|
||
|
* Compute the estimate of the reciprocal condition number.
|
||
|
*
|
||
|
IF( AINVNM.NE.ZERO )
|
||
|
$ RCOND = ( ONE / AINVNM ) / ANORM
|
||
|
*
|
||
|
RETURN
|
||
|
*
|
||
|
* End of SGTCON
|
||
|
*
|
||
|
END
|