You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
379 lines
13 KiB
379 lines
13 KiB
2 years ago
|
*> \brief \b SLABRD reduces the first nb rows and columns of a general matrix to a bidiagonal form.
|
||
|
*
|
||
|
* =========== DOCUMENTATION ===========
|
||
|
*
|
||
|
* Online html documentation available at
|
||
|
* http://www.netlib.org/lapack/explore-html/
|
||
|
*
|
||
|
*> \htmlonly
|
||
|
*> Download SLABRD + dependencies
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slabrd.f">
|
||
|
*> [TGZ]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slabrd.f">
|
||
|
*> [ZIP]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slabrd.f">
|
||
|
*> [TXT]</a>
|
||
|
*> \endhtmlonly
|
||
|
*
|
||
|
* Definition:
|
||
|
* ===========
|
||
|
*
|
||
|
* SUBROUTINE SLABRD( M, N, NB, A, LDA, D, E, TAUQ, TAUP, X, LDX, Y,
|
||
|
* LDY )
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
* INTEGER LDA, LDX, LDY, M, N, NB
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
* REAL A( LDA, * ), D( * ), E( * ), TAUP( * ),
|
||
|
* $ TAUQ( * ), X( LDX, * ), Y( LDY, * )
|
||
|
* ..
|
||
|
*
|
||
|
*
|
||
|
*> \par Purpose:
|
||
|
* =============
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*> SLABRD reduces the first NB rows and columns of a real general
|
||
|
*> m by n matrix A to upper or lower bidiagonal form by an orthogonal
|
||
|
*> transformation Q**T * A * P, and returns the matrices X and Y which
|
||
|
*> are needed to apply the transformation to the unreduced part of A.
|
||
|
*>
|
||
|
*> If m >= n, A is reduced to upper bidiagonal form; if m < n, to lower
|
||
|
*> bidiagonal form.
|
||
|
*>
|
||
|
*> This is an auxiliary routine called by SGEBRD
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Arguments:
|
||
|
* ==========
|
||
|
*
|
||
|
*> \param[in] M
|
||
|
*> \verbatim
|
||
|
*> M is INTEGER
|
||
|
*> The number of rows in the matrix A.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] N
|
||
|
*> \verbatim
|
||
|
*> N is INTEGER
|
||
|
*> The number of columns in the matrix A.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] NB
|
||
|
*> \verbatim
|
||
|
*> NB is INTEGER
|
||
|
*> The number of leading rows and columns of A to be reduced.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] A
|
||
|
*> \verbatim
|
||
|
*> A is REAL array, dimension (LDA,N)
|
||
|
*> On entry, the m by n general matrix to be reduced.
|
||
|
*> On exit, the first NB rows and columns of the matrix are
|
||
|
*> overwritten; the rest of the array is unchanged.
|
||
|
*> If m >= n, elements on and below the diagonal in the first NB
|
||
|
*> columns, with the array TAUQ, represent the orthogonal
|
||
|
*> matrix Q as a product of elementary reflectors; and
|
||
|
*> elements above the diagonal in the first NB rows, with the
|
||
|
*> array TAUP, represent the orthogonal matrix P as a product
|
||
|
*> of elementary reflectors.
|
||
|
*> If m < n, elements below the diagonal in the first NB
|
||
|
*> columns, with the array TAUQ, represent the orthogonal
|
||
|
*> matrix Q as a product of elementary reflectors, and
|
||
|
*> elements on and above the diagonal in the first NB rows,
|
||
|
*> with the array TAUP, represent the orthogonal matrix P as
|
||
|
*> a product of elementary reflectors.
|
||
|
*> See Further Details.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDA
|
||
|
*> \verbatim
|
||
|
*> LDA is INTEGER
|
||
|
*> The leading dimension of the array A. LDA >= max(1,M).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] D
|
||
|
*> \verbatim
|
||
|
*> D is REAL array, dimension (NB)
|
||
|
*> The diagonal elements of the first NB rows and columns of
|
||
|
*> the reduced matrix. D(i) = A(i,i).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] E
|
||
|
*> \verbatim
|
||
|
*> E is REAL array, dimension (NB)
|
||
|
*> The off-diagonal elements of the first NB rows and columns of
|
||
|
*> the reduced matrix.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] TAUQ
|
||
|
*> \verbatim
|
||
|
*> TAUQ is REAL array, dimension (NB)
|
||
|
*> The scalar factors of the elementary reflectors which
|
||
|
*> represent the orthogonal matrix Q. See Further Details.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] TAUP
|
||
|
*> \verbatim
|
||
|
*> TAUP is REAL array, dimension (NB)
|
||
|
*> The scalar factors of the elementary reflectors which
|
||
|
*> represent the orthogonal matrix P. See Further Details.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] X
|
||
|
*> \verbatim
|
||
|
*> X is REAL array, dimension (LDX,NB)
|
||
|
*> The m-by-nb matrix X required to update the unreduced part
|
||
|
*> of A.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDX
|
||
|
*> \verbatim
|
||
|
*> LDX is INTEGER
|
||
|
*> The leading dimension of the array X. LDX >= max(1,M).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] Y
|
||
|
*> \verbatim
|
||
|
*> Y is REAL array, dimension (LDY,NB)
|
||
|
*> The n-by-nb matrix Y required to update the unreduced part
|
||
|
*> of A.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDY
|
||
|
*> \verbatim
|
||
|
*> LDY is INTEGER
|
||
|
*> The leading dimension of the array Y. LDY >= max(1,N).
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Authors:
|
||
|
* ========
|
||
|
*
|
||
|
*> \author Univ. of Tennessee
|
||
|
*> \author Univ. of California Berkeley
|
||
|
*> \author Univ. of Colorado Denver
|
||
|
*> \author NAG Ltd.
|
||
|
*
|
||
|
*> \ingroup realOTHERauxiliary
|
||
|
*
|
||
|
*> \par Further Details:
|
||
|
* =====================
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*> The matrices Q and P are represented as products of elementary
|
||
|
*> reflectors:
|
||
|
*>
|
||
|
*> Q = H(1) H(2) . . . H(nb) and P = G(1) G(2) . . . G(nb)
|
||
|
*>
|
||
|
*> Each H(i) and G(i) has the form:
|
||
|
*>
|
||
|
*> H(i) = I - tauq * v * v**T and G(i) = I - taup * u * u**T
|
||
|
*>
|
||
|
*> where tauq and taup are real scalars, and v and u are real vectors.
|
||
|
*>
|
||
|
*> If m >= n, v(1:i-1) = 0, v(i) = 1, and v(i:m) is stored on exit in
|
||
|
*> A(i:m,i); u(1:i) = 0, u(i+1) = 1, and u(i+1:n) is stored on exit in
|
||
|
*> A(i,i+1:n); tauq is stored in TAUQ(i) and taup in TAUP(i).
|
||
|
*>
|
||
|
*> If m < n, v(1:i) = 0, v(i+1) = 1, and v(i+1:m) is stored on exit in
|
||
|
*> A(i+2:m,i); u(1:i-1) = 0, u(i) = 1, and u(i:n) is stored on exit in
|
||
|
*> A(i,i+1:n); tauq is stored in TAUQ(i) and taup in TAUP(i).
|
||
|
*>
|
||
|
*> The elements of the vectors v and u together form the m-by-nb matrix
|
||
|
*> V and the nb-by-n matrix U**T which are needed, with X and Y, to apply
|
||
|
*> the transformation to the unreduced part of the matrix, using a block
|
||
|
*> update of the form: A := A - V*Y**T - X*U**T.
|
||
|
*>
|
||
|
*> The contents of A on exit are illustrated by the following examples
|
||
|
*> with nb = 2:
|
||
|
*>
|
||
|
*> m = 6 and n = 5 (m > n): m = 5 and n = 6 (m < n):
|
||
|
*>
|
||
|
*> ( 1 1 u1 u1 u1 ) ( 1 u1 u1 u1 u1 u1 )
|
||
|
*> ( v1 1 1 u2 u2 ) ( 1 1 u2 u2 u2 u2 )
|
||
|
*> ( v1 v2 a a a ) ( v1 1 a a a a )
|
||
|
*> ( v1 v2 a a a ) ( v1 v2 a a a a )
|
||
|
*> ( v1 v2 a a a ) ( v1 v2 a a a a )
|
||
|
*> ( v1 v2 a a a )
|
||
|
*>
|
||
|
*> where a denotes an element of the original matrix which is unchanged,
|
||
|
*> vi denotes an element of the vector defining H(i), and ui an element
|
||
|
*> of the vector defining G(i).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
* =====================================================================
|
||
|
SUBROUTINE SLABRD( M, N, NB, A, LDA, D, E, TAUQ, TAUP, X, LDX, Y,
|
||
|
$ LDY )
|
||
|
*
|
||
|
* -- LAPACK auxiliary routine --
|
||
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
INTEGER LDA, LDX, LDY, M, N, NB
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
REAL A( LDA, * ), D( * ), E( * ), TAUP( * ),
|
||
|
$ TAUQ( * ), X( LDX, * ), Y( LDY, * )
|
||
|
* ..
|
||
|
*
|
||
|
* =====================================================================
|
||
|
*
|
||
|
* .. Parameters ..
|
||
|
REAL ZERO, ONE
|
||
|
PARAMETER ( ZERO = 0.0E0, ONE = 1.0E0 )
|
||
|
* ..
|
||
|
* .. Local Scalars ..
|
||
|
INTEGER I
|
||
|
* ..
|
||
|
* .. External Subroutines ..
|
||
|
EXTERNAL SGEMV, SLARFG, SSCAL
|
||
|
* ..
|
||
|
* .. Intrinsic Functions ..
|
||
|
INTRINSIC MIN
|
||
|
* ..
|
||
|
* .. Executable Statements ..
|
||
|
*
|
||
|
* Quick return if possible
|
||
|
*
|
||
|
IF( M.LE.0 .OR. N.LE.0 )
|
||
|
$ RETURN
|
||
|
*
|
||
|
IF( M.GE.N ) THEN
|
||
|
*
|
||
|
* Reduce to upper bidiagonal form
|
||
|
*
|
||
|
DO 10 I = 1, NB
|
||
|
*
|
||
|
* Update A(i:m,i)
|
||
|
*
|
||
|
CALL SGEMV( 'No transpose', M-I+1, I-1, -ONE, A( I, 1 ),
|
||
|
$ LDA, Y( I, 1 ), LDY, ONE, A( I, I ), 1 )
|
||
|
CALL SGEMV( 'No transpose', M-I+1, I-1, -ONE, X( I, 1 ),
|
||
|
$ LDX, A( 1, I ), 1, ONE, A( I, I ), 1 )
|
||
|
*
|
||
|
* Generate reflection Q(i) to annihilate A(i+1:m,i)
|
||
|
*
|
||
|
CALL SLARFG( M-I+1, A( I, I ), A( MIN( I+1, M ), I ), 1,
|
||
|
$ TAUQ( I ) )
|
||
|
D( I ) = A( I, I )
|
||
|
IF( I.LT.N ) THEN
|
||
|
A( I, I ) = ONE
|
||
|
*
|
||
|
* Compute Y(i+1:n,i)
|
||
|
*
|
||
|
CALL SGEMV( 'Transpose', M-I+1, N-I, ONE, A( I, I+1 ),
|
||
|
$ LDA, A( I, I ), 1, ZERO, Y( I+1, I ), 1 )
|
||
|
CALL SGEMV( 'Transpose', M-I+1, I-1, ONE, A( I, 1 ), LDA,
|
||
|
$ A( I, I ), 1, ZERO, Y( 1, I ), 1 )
|
||
|
CALL SGEMV( 'No transpose', N-I, I-1, -ONE, Y( I+1, 1 ),
|
||
|
$ LDY, Y( 1, I ), 1, ONE, Y( I+1, I ), 1 )
|
||
|
CALL SGEMV( 'Transpose', M-I+1, I-1, ONE, X( I, 1 ), LDX,
|
||
|
$ A( I, I ), 1, ZERO, Y( 1, I ), 1 )
|
||
|
CALL SGEMV( 'Transpose', I-1, N-I, -ONE, A( 1, I+1 ),
|
||
|
$ LDA, Y( 1, I ), 1, ONE, Y( I+1, I ), 1 )
|
||
|
CALL SSCAL( N-I, TAUQ( I ), Y( I+1, I ), 1 )
|
||
|
*
|
||
|
* Update A(i,i+1:n)
|
||
|
*
|
||
|
CALL SGEMV( 'No transpose', N-I, I, -ONE, Y( I+1, 1 ),
|
||
|
$ LDY, A( I, 1 ), LDA, ONE, A( I, I+1 ), LDA )
|
||
|
CALL SGEMV( 'Transpose', I-1, N-I, -ONE, A( 1, I+1 ),
|
||
|
$ LDA, X( I, 1 ), LDX, ONE, A( I, I+1 ), LDA )
|
||
|
*
|
||
|
* Generate reflection P(i) to annihilate A(i,i+2:n)
|
||
|
*
|
||
|
CALL SLARFG( N-I, A( I, I+1 ), A( I, MIN( I+2, N ) ),
|
||
|
$ LDA, TAUP( I ) )
|
||
|
E( I ) = A( I, I+1 )
|
||
|
A( I, I+1 ) = ONE
|
||
|
*
|
||
|
* Compute X(i+1:m,i)
|
||
|
*
|
||
|
CALL SGEMV( 'No transpose', M-I, N-I, ONE, A( I+1, I+1 ),
|
||
|
$ LDA, A( I, I+1 ), LDA, ZERO, X( I+1, I ), 1 )
|
||
|
CALL SGEMV( 'Transpose', N-I, I, ONE, Y( I+1, 1 ), LDY,
|
||
|
$ A( I, I+1 ), LDA, ZERO, X( 1, I ), 1 )
|
||
|
CALL SGEMV( 'No transpose', M-I, I, -ONE, A( I+1, 1 ),
|
||
|
$ LDA, X( 1, I ), 1, ONE, X( I+1, I ), 1 )
|
||
|
CALL SGEMV( 'No transpose', I-1, N-I, ONE, A( 1, I+1 ),
|
||
|
$ LDA, A( I, I+1 ), LDA, ZERO, X( 1, I ), 1 )
|
||
|
CALL SGEMV( 'No transpose', M-I, I-1, -ONE, X( I+1, 1 ),
|
||
|
$ LDX, X( 1, I ), 1, ONE, X( I+1, I ), 1 )
|
||
|
CALL SSCAL( M-I, TAUP( I ), X( I+1, I ), 1 )
|
||
|
END IF
|
||
|
10 CONTINUE
|
||
|
ELSE
|
||
|
*
|
||
|
* Reduce to lower bidiagonal form
|
||
|
*
|
||
|
DO 20 I = 1, NB
|
||
|
*
|
||
|
* Update A(i,i:n)
|
||
|
*
|
||
|
CALL SGEMV( 'No transpose', N-I+1, I-1, -ONE, Y( I, 1 ),
|
||
|
$ LDY, A( I, 1 ), LDA, ONE, A( I, I ), LDA )
|
||
|
CALL SGEMV( 'Transpose', I-1, N-I+1, -ONE, A( 1, I ), LDA,
|
||
|
$ X( I, 1 ), LDX, ONE, A( I, I ), LDA )
|
||
|
*
|
||
|
* Generate reflection P(i) to annihilate A(i,i+1:n)
|
||
|
*
|
||
|
CALL SLARFG( N-I+1, A( I, I ), A( I, MIN( I+1, N ) ), LDA,
|
||
|
$ TAUP( I ) )
|
||
|
D( I ) = A( I, I )
|
||
|
IF( I.LT.M ) THEN
|
||
|
A( I, I ) = ONE
|
||
|
*
|
||
|
* Compute X(i+1:m,i)
|
||
|
*
|
||
|
CALL SGEMV( 'No transpose', M-I, N-I+1, ONE, A( I+1, I ),
|
||
|
$ LDA, A( I, I ), LDA, ZERO, X( I+1, I ), 1 )
|
||
|
CALL SGEMV( 'Transpose', N-I+1, I-1, ONE, Y( I, 1 ), LDY,
|
||
|
$ A( I, I ), LDA, ZERO, X( 1, I ), 1 )
|
||
|
CALL SGEMV( 'No transpose', M-I, I-1, -ONE, A( I+1, 1 ),
|
||
|
$ LDA, X( 1, I ), 1, ONE, X( I+1, I ), 1 )
|
||
|
CALL SGEMV( 'No transpose', I-1, N-I+1, ONE, A( 1, I ),
|
||
|
$ LDA, A( I, I ), LDA, ZERO, X( 1, I ), 1 )
|
||
|
CALL SGEMV( 'No transpose', M-I, I-1, -ONE, X( I+1, 1 ),
|
||
|
$ LDX, X( 1, I ), 1, ONE, X( I+1, I ), 1 )
|
||
|
CALL SSCAL( M-I, TAUP( I ), X( I+1, I ), 1 )
|
||
|
*
|
||
|
* Update A(i+1:m,i)
|
||
|
*
|
||
|
CALL SGEMV( 'No transpose', M-I, I-1, -ONE, A( I+1, 1 ),
|
||
|
$ LDA, Y( I, 1 ), LDY, ONE, A( I+1, I ), 1 )
|
||
|
CALL SGEMV( 'No transpose', M-I, I, -ONE, X( I+1, 1 ),
|
||
|
$ LDX, A( 1, I ), 1, ONE, A( I+1, I ), 1 )
|
||
|
*
|
||
|
* Generate reflection Q(i) to annihilate A(i+2:m,i)
|
||
|
*
|
||
|
CALL SLARFG( M-I, A( I+1, I ), A( MIN( I+2, M ), I ), 1,
|
||
|
$ TAUQ( I ) )
|
||
|
E( I ) = A( I+1, I )
|
||
|
A( I+1, I ) = ONE
|
||
|
*
|
||
|
* Compute Y(i+1:n,i)
|
||
|
*
|
||
|
CALL SGEMV( 'Transpose', M-I, N-I, ONE, A( I+1, I+1 ),
|
||
|
$ LDA, A( I+1, I ), 1, ZERO, Y( I+1, I ), 1 )
|
||
|
CALL SGEMV( 'Transpose', M-I, I-1, ONE, A( I+1, 1 ), LDA,
|
||
|
$ A( I+1, I ), 1, ZERO, Y( 1, I ), 1 )
|
||
|
CALL SGEMV( 'No transpose', N-I, I-1, -ONE, Y( I+1, 1 ),
|
||
|
$ LDY, Y( 1, I ), 1, ONE, Y( I+1, I ), 1 )
|
||
|
CALL SGEMV( 'Transpose', M-I, I, ONE, X( I+1, 1 ), LDX,
|
||
|
$ A( I+1, I ), 1, ZERO, Y( 1, I ), 1 )
|
||
|
CALL SGEMV( 'Transpose', I, N-I, -ONE, A( 1, I+1 ), LDA,
|
||
|
$ Y( 1, I ), 1, ONE, Y( I+1, I ), 1 )
|
||
|
CALL SSCAL( N-I, TAUQ( I ), Y( I+1, I ), 1 )
|
||
|
END IF
|
||
|
20 CONTINUE
|
||
|
END IF
|
||
|
RETURN
|
||
|
*
|
||
|
* End of SLABRD
|
||
|
*
|
||
|
END
|