You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
372 lines
10 KiB
372 lines
10 KiB
2 years ago
|
*> \brief \b SLAGV2 computes the Generalized Schur factorization of a real 2-by-2 matrix pencil (A,B) where B is upper triangular.
|
||
|
*
|
||
|
* =========== DOCUMENTATION ===========
|
||
|
*
|
||
|
* Online html documentation available at
|
||
|
* http://www.netlib.org/lapack/explore-html/
|
||
|
*
|
||
|
*> \htmlonly
|
||
|
*> Download SLAGV2 + dependencies
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slagv2.f">
|
||
|
*> [TGZ]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slagv2.f">
|
||
|
*> [ZIP]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slagv2.f">
|
||
|
*> [TXT]</a>
|
||
|
*> \endhtmlonly
|
||
|
*
|
||
|
* Definition:
|
||
|
* ===========
|
||
|
*
|
||
|
* SUBROUTINE SLAGV2( A, LDA, B, LDB, ALPHAR, ALPHAI, BETA, CSL, SNL,
|
||
|
* CSR, SNR )
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
* INTEGER LDA, LDB
|
||
|
* REAL CSL, CSR, SNL, SNR
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
* REAL A( LDA, * ), ALPHAI( 2 ), ALPHAR( 2 ),
|
||
|
* $ B( LDB, * ), BETA( 2 )
|
||
|
* ..
|
||
|
*
|
||
|
*
|
||
|
*> \par Purpose:
|
||
|
* =============
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*> SLAGV2 computes the Generalized Schur factorization of a real 2-by-2
|
||
|
*> matrix pencil (A,B) where B is upper triangular. This routine
|
||
|
*> computes orthogonal (rotation) matrices given by CSL, SNL and CSR,
|
||
|
*> SNR such that
|
||
|
*>
|
||
|
*> 1) if the pencil (A,B) has two real eigenvalues (include 0/0 or 1/0
|
||
|
*> types), then
|
||
|
*>
|
||
|
*> [ a11 a12 ] := [ CSL SNL ] [ a11 a12 ] [ CSR -SNR ]
|
||
|
*> [ 0 a22 ] [ -SNL CSL ] [ a21 a22 ] [ SNR CSR ]
|
||
|
*>
|
||
|
*> [ b11 b12 ] := [ CSL SNL ] [ b11 b12 ] [ CSR -SNR ]
|
||
|
*> [ 0 b22 ] [ -SNL CSL ] [ 0 b22 ] [ SNR CSR ],
|
||
|
*>
|
||
|
*> 2) if the pencil (A,B) has a pair of complex conjugate eigenvalues,
|
||
|
*> then
|
||
|
*>
|
||
|
*> [ a11 a12 ] := [ CSL SNL ] [ a11 a12 ] [ CSR -SNR ]
|
||
|
*> [ a21 a22 ] [ -SNL CSL ] [ a21 a22 ] [ SNR CSR ]
|
||
|
*>
|
||
|
*> [ b11 0 ] := [ CSL SNL ] [ b11 b12 ] [ CSR -SNR ]
|
||
|
*> [ 0 b22 ] [ -SNL CSL ] [ 0 b22 ] [ SNR CSR ]
|
||
|
*>
|
||
|
*> where b11 >= b22 > 0.
|
||
|
*>
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Arguments:
|
||
|
* ==========
|
||
|
*
|
||
|
*> \param[in,out] A
|
||
|
*> \verbatim
|
||
|
*> A is REAL array, dimension (LDA, 2)
|
||
|
*> On entry, the 2 x 2 matrix A.
|
||
|
*> On exit, A is overwritten by the ``A-part'' of the
|
||
|
*> generalized Schur form.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDA
|
||
|
*> \verbatim
|
||
|
*> LDA is INTEGER
|
||
|
*> THe leading dimension of the array A. LDA >= 2.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] B
|
||
|
*> \verbatim
|
||
|
*> B is REAL array, dimension (LDB, 2)
|
||
|
*> On entry, the upper triangular 2 x 2 matrix B.
|
||
|
*> On exit, B is overwritten by the ``B-part'' of the
|
||
|
*> generalized Schur form.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDB
|
||
|
*> \verbatim
|
||
|
*> LDB is INTEGER
|
||
|
*> THe leading dimension of the array B. LDB >= 2.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] ALPHAR
|
||
|
*> \verbatim
|
||
|
*> ALPHAR is REAL array, dimension (2)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] ALPHAI
|
||
|
*> \verbatim
|
||
|
*> ALPHAI is REAL array, dimension (2)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] BETA
|
||
|
*> \verbatim
|
||
|
*> BETA is REAL array, dimension (2)
|
||
|
*> (ALPHAR(k)+i*ALPHAI(k))/BETA(k) are the eigenvalues of the
|
||
|
*> pencil (A,B), k=1,2, i = sqrt(-1). Note that BETA(k) may
|
||
|
*> be zero.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] CSL
|
||
|
*> \verbatim
|
||
|
*> CSL is REAL
|
||
|
*> The cosine of the left rotation matrix.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] SNL
|
||
|
*> \verbatim
|
||
|
*> SNL is REAL
|
||
|
*> The sine of the left rotation matrix.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] CSR
|
||
|
*> \verbatim
|
||
|
*> CSR is REAL
|
||
|
*> The cosine of the right rotation matrix.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] SNR
|
||
|
*> \verbatim
|
||
|
*> SNR is REAL
|
||
|
*> The sine of the right rotation matrix.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Authors:
|
||
|
* ========
|
||
|
*
|
||
|
*> \author Univ. of Tennessee
|
||
|
*> \author Univ. of California Berkeley
|
||
|
*> \author Univ. of Colorado Denver
|
||
|
*> \author NAG Ltd.
|
||
|
*
|
||
|
*> \ingroup realOTHERauxiliary
|
||
|
*
|
||
|
*> \par Contributors:
|
||
|
* ==================
|
||
|
*>
|
||
|
*> Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
|
||
|
*
|
||
|
* =====================================================================
|
||
|
SUBROUTINE SLAGV2( A, LDA, B, LDB, ALPHAR, ALPHAI, BETA, CSL, SNL,
|
||
|
$ CSR, SNR )
|
||
|
*
|
||
|
* -- LAPACK auxiliary routine --
|
||
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
INTEGER LDA, LDB
|
||
|
REAL CSL, CSR, SNL, SNR
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
REAL A( LDA, * ), ALPHAI( 2 ), ALPHAR( 2 ),
|
||
|
$ B( LDB, * ), BETA( 2 )
|
||
|
* ..
|
||
|
*
|
||
|
* =====================================================================
|
||
|
*
|
||
|
* .. Parameters ..
|
||
|
REAL ZERO, ONE
|
||
|
PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
|
||
|
* ..
|
||
|
* .. Local Scalars ..
|
||
|
REAL ANORM, ASCALE, BNORM, BSCALE, H1, H2, H3, QQ,
|
||
|
$ R, RR, SAFMIN, SCALE1, SCALE2, T, ULP, WI, WR1,
|
||
|
$ WR2
|
||
|
* ..
|
||
|
* .. External Subroutines ..
|
||
|
EXTERNAL SLAG2, SLARTG, SLASV2, SROT
|
||
|
* ..
|
||
|
* .. External Functions ..
|
||
|
REAL SLAMCH, SLAPY2
|
||
|
EXTERNAL SLAMCH, SLAPY2
|
||
|
* ..
|
||
|
* .. Intrinsic Functions ..
|
||
|
INTRINSIC ABS, MAX
|
||
|
* ..
|
||
|
* .. Executable Statements ..
|
||
|
*
|
||
|
SAFMIN = SLAMCH( 'S' )
|
||
|
ULP = SLAMCH( 'P' )
|
||
|
*
|
||
|
* Scale A
|
||
|
*
|
||
|
ANORM = MAX( ABS( A( 1, 1 ) )+ABS( A( 2, 1 ) ),
|
||
|
$ ABS( A( 1, 2 ) )+ABS( A( 2, 2 ) ), SAFMIN )
|
||
|
ASCALE = ONE / ANORM
|
||
|
A( 1, 1 ) = ASCALE*A( 1, 1 )
|
||
|
A( 1, 2 ) = ASCALE*A( 1, 2 )
|
||
|
A( 2, 1 ) = ASCALE*A( 2, 1 )
|
||
|
A( 2, 2 ) = ASCALE*A( 2, 2 )
|
||
|
*
|
||
|
* Scale B
|
||
|
*
|
||
|
BNORM = MAX( ABS( B( 1, 1 ) ), ABS( B( 1, 2 ) )+ABS( B( 2, 2 ) ),
|
||
|
$ SAFMIN )
|
||
|
BSCALE = ONE / BNORM
|
||
|
B( 1, 1 ) = BSCALE*B( 1, 1 )
|
||
|
B( 1, 2 ) = BSCALE*B( 1, 2 )
|
||
|
B( 2, 2 ) = BSCALE*B( 2, 2 )
|
||
|
*
|
||
|
* Check if A can be deflated
|
||
|
*
|
||
|
IF( ABS( A( 2, 1 ) ).LE.ULP ) THEN
|
||
|
CSL = ONE
|
||
|
SNL = ZERO
|
||
|
CSR = ONE
|
||
|
SNR = ZERO
|
||
|
A( 2, 1 ) = ZERO
|
||
|
B( 2, 1 ) = ZERO
|
||
|
WI = ZERO
|
||
|
*
|
||
|
* Check if B is singular
|
||
|
*
|
||
|
ELSE IF( ABS( B( 1, 1 ) ).LE.ULP ) THEN
|
||
|
CALL SLARTG( A( 1, 1 ), A( 2, 1 ), CSL, SNL, R )
|
||
|
CSR = ONE
|
||
|
SNR = ZERO
|
||
|
CALL SROT( 2, A( 1, 1 ), LDA, A( 2, 1 ), LDA, CSL, SNL )
|
||
|
CALL SROT( 2, B( 1, 1 ), LDB, B( 2, 1 ), LDB, CSL, SNL )
|
||
|
A( 2, 1 ) = ZERO
|
||
|
B( 1, 1 ) = ZERO
|
||
|
B( 2, 1 ) = ZERO
|
||
|
WI = ZERO
|
||
|
*
|
||
|
ELSE IF( ABS( B( 2, 2 ) ).LE.ULP ) THEN
|
||
|
CALL SLARTG( A( 2, 2 ), A( 2, 1 ), CSR, SNR, T )
|
||
|
SNR = -SNR
|
||
|
CALL SROT( 2, A( 1, 1 ), 1, A( 1, 2 ), 1, CSR, SNR )
|
||
|
CALL SROT( 2, B( 1, 1 ), 1, B( 1, 2 ), 1, CSR, SNR )
|
||
|
CSL = ONE
|
||
|
SNL = ZERO
|
||
|
A( 2, 1 ) = ZERO
|
||
|
B( 2, 1 ) = ZERO
|
||
|
B( 2, 2 ) = ZERO
|
||
|
WI = ZERO
|
||
|
*
|
||
|
ELSE
|
||
|
*
|
||
|
* B is nonsingular, first compute the eigenvalues of (A,B)
|
||
|
*
|
||
|
CALL SLAG2( A, LDA, B, LDB, SAFMIN, SCALE1, SCALE2, WR1, WR2,
|
||
|
$ WI )
|
||
|
*
|
||
|
IF( WI.EQ.ZERO ) THEN
|
||
|
*
|
||
|
* two real eigenvalues, compute s*A-w*B
|
||
|
*
|
||
|
H1 = SCALE1*A( 1, 1 ) - WR1*B( 1, 1 )
|
||
|
H2 = SCALE1*A( 1, 2 ) - WR1*B( 1, 2 )
|
||
|
H3 = SCALE1*A( 2, 2 ) - WR1*B( 2, 2 )
|
||
|
*
|
||
|
RR = SLAPY2( H1, H2 )
|
||
|
QQ = SLAPY2( SCALE1*A( 2, 1 ), H3 )
|
||
|
*
|
||
|
IF( RR.GT.QQ ) THEN
|
||
|
*
|
||
|
* find right rotation matrix to zero 1,1 element of
|
||
|
* (sA - wB)
|
||
|
*
|
||
|
CALL SLARTG( H2, H1, CSR, SNR, T )
|
||
|
*
|
||
|
ELSE
|
||
|
*
|
||
|
* find right rotation matrix to zero 2,1 element of
|
||
|
* (sA - wB)
|
||
|
*
|
||
|
CALL SLARTG( H3, SCALE1*A( 2, 1 ), CSR, SNR, T )
|
||
|
*
|
||
|
END IF
|
||
|
*
|
||
|
SNR = -SNR
|
||
|
CALL SROT( 2, A( 1, 1 ), 1, A( 1, 2 ), 1, CSR, SNR )
|
||
|
CALL SROT( 2, B( 1, 1 ), 1, B( 1, 2 ), 1, CSR, SNR )
|
||
|
*
|
||
|
* compute inf norms of A and B
|
||
|
*
|
||
|
H1 = MAX( ABS( A( 1, 1 ) )+ABS( A( 1, 2 ) ),
|
||
|
$ ABS( A( 2, 1 ) )+ABS( A( 2, 2 ) ) )
|
||
|
H2 = MAX( ABS( B( 1, 1 ) )+ABS( B( 1, 2 ) ),
|
||
|
$ ABS( B( 2, 1 ) )+ABS( B( 2, 2 ) ) )
|
||
|
*
|
||
|
IF( ( SCALE1*H1 ).GE.ABS( WR1 )*H2 ) THEN
|
||
|
*
|
||
|
* find left rotation matrix Q to zero out B(2,1)
|
||
|
*
|
||
|
CALL SLARTG( B( 1, 1 ), B( 2, 1 ), CSL, SNL, R )
|
||
|
*
|
||
|
ELSE
|
||
|
*
|
||
|
* find left rotation matrix Q to zero out A(2,1)
|
||
|
*
|
||
|
CALL SLARTG( A( 1, 1 ), A( 2, 1 ), CSL, SNL, R )
|
||
|
*
|
||
|
END IF
|
||
|
*
|
||
|
CALL SROT( 2, A( 1, 1 ), LDA, A( 2, 1 ), LDA, CSL, SNL )
|
||
|
CALL SROT( 2, B( 1, 1 ), LDB, B( 2, 1 ), LDB, CSL, SNL )
|
||
|
*
|
||
|
A( 2, 1 ) = ZERO
|
||
|
B( 2, 1 ) = ZERO
|
||
|
*
|
||
|
ELSE
|
||
|
*
|
||
|
* a pair of complex conjugate eigenvalues
|
||
|
* first compute the SVD of the matrix B
|
||
|
*
|
||
|
CALL SLASV2( B( 1, 1 ), B( 1, 2 ), B( 2, 2 ), R, T, SNR,
|
||
|
$ CSR, SNL, CSL )
|
||
|
*
|
||
|
* Form (A,B) := Q(A,B)Z**T where Q is left rotation matrix and
|
||
|
* Z is right rotation matrix computed from SLASV2
|
||
|
*
|
||
|
CALL SROT( 2, A( 1, 1 ), LDA, A( 2, 1 ), LDA, CSL, SNL )
|
||
|
CALL SROT( 2, B( 1, 1 ), LDB, B( 2, 1 ), LDB, CSL, SNL )
|
||
|
CALL SROT( 2, A( 1, 1 ), 1, A( 1, 2 ), 1, CSR, SNR )
|
||
|
CALL SROT( 2, B( 1, 1 ), 1, B( 1, 2 ), 1, CSR, SNR )
|
||
|
*
|
||
|
B( 2, 1 ) = ZERO
|
||
|
B( 1, 2 ) = ZERO
|
||
|
*
|
||
|
END IF
|
||
|
*
|
||
|
END IF
|
||
|
*
|
||
|
* Unscaling
|
||
|
*
|
||
|
A( 1, 1 ) = ANORM*A( 1, 1 )
|
||
|
A( 2, 1 ) = ANORM*A( 2, 1 )
|
||
|
A( 1, 2 ) = ANORM*A( 1, 2 )
|
||
|
A( 2, 2 ) = ANORM*A( 2, 2 )
|
||
|
B( 1, 1 ) = BNORM*B( 1, 1 )
|
||
|
B( 2, 1 ) = BNORM*B( 2, 1 )
|
||
|
B( 1, 2 ) = BNORM*B( 1, 2 )
|
||
|
B( 2, 2 ) = BNORM*B( 2, 2 )
|
||
|
*
|
||
|
IF( WI.EQ.ZERO ) THEN
|
||
|
ALPHAR( 1 ) = A( 1, 1 )
|
||
|
ALPHAR( 2 ) = A( 2, 2 )
|
||
|
ALPHAI( 1 ) = ZERO
|
||
|
ALPHAI( 2 ) = ZERO
|
||
|
BETA( 1 ) = B( 1, 1 )
|
||
|
BETA( 2 ) = B( 2, 2 )
|
||
|
ELSE
|
||
|
ALPHAR( 1 ) = ANORM*WR1 / SCALE1 / BNORM
|
||
|
ALPHAI( 1 ) = ANORM*WI / SCALE1 / BNORM
|
||
|
ALPHAR( 2 ) = ALPHAR( 1 )
|
||
|
ALPHAI( 2 ) = -ALPHAI( 1 )
|
||
|
BETA( 1 ) = ONE
|
||
|
BETA( 2 ) = ONE
|
||
|
END IF
|
||
|
*
|
||
|
RETURN
|
||
|
*
|
||
|
* End of SLAGV2
|
||
|
*
|
||
|
END
|