You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
324 lines
9.8 KiB
324 lines
9.8 KiB
2 years ago
|
*> \brief \b SLAHR2 reduces the specified number of first columns of a general rectangular matrix A so that elements below the specified subdiagonal are zero, and returns auxiliary matrices which are needed to apply the transformation to the unreduced part of A.
|
||
|
*
|
||
|
* =========== DOCUMENTATION ===========
|
||
|
*
|
||
|
* Online html documentation available at
|
||
|
* http://www.netlib.org/lapack/explore-html/
|
||
|
*
|
||
|
*> \htmlonly
|
||
|
*> Download SLAHR2 + dependencies
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slahr2.f">
|
||
|
*> [TGZ]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slahr2.f">
|
||
|
*> [ZIP]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slahr2.f">
|
||
|
*> [TXT]</a>
|
||
|
*> \endhtmlonly
|
||
|
*
|
||
|
* Definition:
|
||
|
* ===========
|
||
|
*
|
||
|
* SUBROUTINE SLAHR2( N, K, NB, A, LDA, TAU, T, LDT, Y, LDY )
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
* INTEGER K, LDA, LDT, LDY, N, NB
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
* REAL A( LDA, * ), T( LDT, NB ), TAU( NB ),
|
||
|
* $ Y( LDY, NB )
|
||
|
* ..
|
||
|
*
|
||
|
*
|
||
|
*> \par Purpose:
|
||
|
* =============
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*> SLAHR2 reduces the first NB columns of A real general n-BY-(n-k+1)
|
||
|
*> matrix A so that elements below the k-th subdiagonal are zero. The
|
||
|
*> reduction is performed by an orthogonal similarity transformation
|
||
|
*> Q**T * A * Q. The routine returns the matrices V and T which determine
|
||
|
*> Q as a block reflector I - V*T*V**T, and also the matrix Y = A * V * T.
|
||
|
*>
|
||
|
*> This is an auxiliary routine called by SGEHRD.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Arguments:
|
||
|
* ==========
|
||
|
*
|
||
|
*> \param[in] N
|
||
|
*> \verbatim
|
||
|
*> N is INTEGER
|
||
|
*> The order of the matrix A.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] K
|
||
|
*> \verbatim
|
||
|
*> K is INTEGER
|
||
|
*> The offset for the reduction. Elements below the k-th
|
||
|
*> subdiagonal in the first NB columns are reduced to zero.
|
||
|
*> K < N.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] NB
|
||
|
*> \verbatim
|
||
|
*> NB is INTEGER
|
||
|
*> The number of columns to be reduced.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] A
|
||
|
*> \verbatim
|
||
|
*> A is REAL array, dimension (LDA,N-K+1)
|
||
|
*> On entry, the n-by-(n-k+1) general matrix A.
|
||
|
*> On exit, the elements on and above the k-th subdiagonal in
|
||
|
*> the first NB columns are overwritten with the corresponding
|
||
|
*> elements of the reduced matrix; the elements below the k-th
|
||
|
*> subdiagonal, with the array TAU, represent the matrix Q as a
|
||
|
*> product of elementary reflectors. The other columns of A are
|
||
|
*> unchanged. See Further Details.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDA
|
||
|
*> \verbatim
|
||
|
*> LDA is INTEGER
|
||
|
*> The leading dimension of the array A. LDA >= max(1,N).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] TAU
|
||
|
*> \verbatim
|
||
|
*> TAU is REAL array, dimension (NB)
|
||
|
*> The scalar factors of the elementary reflectors. See Further
|
||
|
*> Details.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] T
|
||
|
*> \verbatim
|
||
|
*> T is REAL array, dimension (LDT,NB)
|
||
|
*> The upper triangular matrix T.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDT
|
||
|
*> \verbatim
|
||
|
*> LDT is INTEGER
|
||
|
*> The leading dimension of the array T. LDT >= NB.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] Y
|
||
|
*> \verbatim
|
||
|
*> Y is REAL array, dimension (LDY,NB)
|
||
|
*> The n-by-nb matrix Y.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDY
|
||
|
*> \verbatim
|
||
|
*> LDY is INTEGER
|
||
|
*> The leading dimension of the array Y. LDY >= N.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Authors:
|
||
|
* ========
|
||
|
*
|
||
|
*> \author Univ. of Tennessee
|
||
|
*> \author Univ. of California Berkeley
|
||
|
*> \author Univ. of Colorado Denver
|
||
|
*> \author NAG Ltd.
|
||
|
*
|
||
|
*> \ingroup realOTHERauxiliary
|
||
|
*
|
||
|
*> \par Further Details:
|
||
|
* =====================
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*> The matrix Q is represented as a product of nb elementary reflectors
|
||
|
*>
|
||
|
*> Q = H(1) H(2) . . . H(nb).
|
||
|
*>
|
||
|
*> Each H(i) has the form
|
||
|
*>
|
||
|
*> H(i) = I - tau * v * v**T
|
||
|
*>
|
||
|
*> where tau is a real scalar, and v is a real vector with
|
||
|
*> v(1:i+k-1) = 0, v(i+k) = 1; v(i+k+1:n) is stored on exit in
|
||
|
*> A(i+k+1:n,i), and tau in TAU(i).
|
||
|
*>
|
||
|
*> The elements of the vectors v together form the (n-k+1)-by-nb matrix
|
||
|
*> V which is needed, with T and Y, to apply the transformation to the
|
||
|
*> unreduced part of the matrix, using an update of the form:
|
||
|
*> A := (I - V*T*V**T) * (A - Y*V**T).
|
||
|
*>
|
||
|
*> The contents of A on exit are illustrated by the following example
|
||
|
*> with n = 7, k = 3 and nb = 2:
|
||
|
*>
|
||
|
*> ( a a a a a )
|
||
|
*> ( a a a a a )
|
||
|
*> ( a a a a a )
|
||
|
*> ( h h a a a )
|
||
|
*> ( v1 h a a a )
|
||
|
*> ( v1 v2 a a a )
|
||
|
*> ( v1 v2 a a a )
|
||
|
*>
|
||
|
*> where a denotes an element of the original matrix A, h denotes a
|
||
|
*> modified element of the upper Hessenberg matrix H, and vi denotes an
|
||
|
*> element of the vector defining H(i).
|
||
|
*>
|
||
|
*> This subroutine is a slight modification of LAPACK-3.0's SLAHRD
|
||
|
*> incorporating improvements proposed by Quintana-Orti and Van de
|
||
|
*> Gejin. Note that the entries of A(1:K,2:NB) differ from those
|
||
|
*> returned by the original LAPACK-3.0's SLAHRD routine. (This
|
||
|
*> subroutine is not backward compatible with LAPACK-3.0's SLAHRD.)
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
*> \par References:
|
||
|
* ================
|
||
|
*>
|
||
|
*> Gregorio Quintana-Orti and Robert van de Geijn, "Improving the
|
||
|
*> performance of reduction to Hessenberg form," ACM Transactions on
|
||
|
*> Mathematical Software, 32(2):180-194, June 2006.
|
||
|
*>
|
||
|
* =====================================================================
|
||
|
SUBROUTINE SLAHR2( N, K, NB, A, LDA, TAU, T, LDT, Y, LDY )
|
||
|
*
|
||
|
* -- LAPACK auxiliary routine --
|
||
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
INTEGER K, LDA, LDT, LDY, N, NB
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
REAL A( LDA, * ), T( LDT, NB ), TAU( NB ),
|
||
|
$ Y( LDY, NB )
|
||
|
* ..
|
||
|
*
|
||
|
* =====================================================================
|
||
|
*
|
||
|
* .. Parameters ..
|
||
|
REAL ZERO, ONE
|
||
|
PARAMETER ( ZERO = 0.0E+0,
|
||
|
$ ONE = 1.0E+0 )
|
||
|
* ..
|
||
|
* .. Local Scalars ..
|
||
|
INTEGER I
|
||
|
REAL EI
|
||
|
* ..
|
||
|
* .. External Subroutines ..
|
||
|
EXTERNAL SAXPY, SCOPY, SGEMM, SGEMV, SLACPY,
|
||
|
$ SLARFG, SSCAL, STRMM, STRMV
|
||
|
* ..
|
||
|
* .. Intrinsic Functions ..
|
||
|
INTRINSIC MIN
|
||
|
* ..
|
||
|
* .. Executable Statements ..
|
||
|
*
|
||
|
* Quick return if possible
|
||
|
*
|
||
|
IF( N.LE.1 )
|
||
|
$ RETURN
|
||
|
*
|
||
|
DO 10 I = 1, NB
|
||
|
IF( I.GT.1 ) THEN
|
||
|
*
|
||
|
* Update A(K+1:N,I)
|
||
|
*
|
||
|
* Update I-th column of A - Y * V**T
|
||
|
*
|
||
|
CALL SGEMV( 'NO TRANSPOSE', N-K, I-1, -ONE, Y(K+1,1), LDY,
|
||
|
$ A( K+I-1, 1 ), LDA, ONE, A( K+1, I ), 1 )
|
||
|
*
|
||
|
* Apply I - V * T**T * V**T to this column (call it b) from the
|
||
|
* left, using the last column of T as workspace
|
||
|
*
|
||
|
* Let V = ( V1 ) and b = ( b1 ) (first I-1 rows)
|
||
|
* ( V2 ) ( b2 )
|
||
|
*
|
||
|
* where V1 is unit lower triangular
|
||
|
*
|
||
|
* w := V1**T * b1
|
||
|
*
|
||
|
CALL SCOPY( I-1, A( K+1, I ), 1, T( 1, NB ), 1 )
|
||
|
CALL STRMV( 'Lower', 'Transpose', 'UNIT',
|
||
|
$ I-1, A( K+1, 1 ),
|
||
|
$ LDA, T( 1, NB ), 1 )
|
||
|
*
|
||
|
* w := w + V2**T * b2
|
||
|
*
|
||
|
CALL SGEMV( 'Transpose', N-K-I+1, I-1,
|
||
|
$ ONE, A( K+I, 1 ),
|
||
|
$ LDA, A( K+I, I ), 1, ONE, T( 1, NB ), 1 )
|
||
|
*
|
||
|
* w := T**T * w
|
||
|
*
|
||
|
CALL STRMV( 'Upper', 'Transpose', 'NON-UNIT',
|
||
|
$ I-1, T, LDT,
|
||
|
$ T( 1, NB ), 1 )
|
||
|
*
|
||
|
* b2 := b2 - V2*w
|
||
|
*
|
||
|
CALL SGEMV( 'NO TRANSPOSE', N-K-I+1, I-1, -ONE,
|
||
|
$ A( K+I, 1 ),
|
||
|
$ LDA, T( 1, NB ), 1, ONE, A( K+I, I ), 1 )
|
||
|
*
|
||
|
* b1 := b1 - V1*w
|
||
|
*
|
||
|
CALL STRMV( 'Lower', 'NO TRANSPOSE',
|
||
|
$ 'UNIT', I-1,
|
||
|
$ A( K+1, 1 ), LDA, T( 1, NB ), 1 )
|
||
|
CALL SAXPY( I-1, -ONE, T( 1, NB ), 1, A( K+1, I ), 1 )
|
||
|
*
|
||
|
A( K+I-1, I-1 ) = EI
|
||
|
END IF
|
||
|
*
|
||
|
* Generate the elementary reflector H(I) to annihilate
|
||
|
* A(K+I+1:N,I)
|
||
|
*
|
||
|
CALL SLARFG( N-K-I+1, A( K+I, I ), A( MIN( K+I+1, N ), I ), 1,
|
||
|
$ TAU( I ) )
|
||
|
EI = A( K+I, I )
|
||
|
A( K+I, I ) = ONE
|
||
|
*
|
||
|
* Compute Y(K+1:N,I)
|
||
|
*
|
||
|
CALL SGEMV( 'NO TRANSPOSE', N-K, N-K-I+1,
|
||
|
$ ONE, A( K+1, I+1 ),
|
||
|
$ LDA, A( K+I, I ), 1, ZERO, Y( K+1, I ), 1 )
|
||
|
CALL SGEMV( 'Transpose', N-K-I+1, I-1,
|
||
|
$ ONE, A( K+I, 1 ), LDA,
|
||
|
$ A( K+I, I ), 1, ZERO, T( 1, I ), 1 )
|
||
|
CALL SGEMV( 'NO TRANSPOSE', N-K, I-1, -ONE,
|
||
|
$ Y( K+1, 1 ), LDY,
|
||
|
$ T( 1, I ), 1, ONE, Y( K+1, I ), 1 )
|
||
|
CALL SSCAL( N-K, TAU( I ), Y( K+1, I ), 1 )
|
||
|
*
|
||
|
* Compute T(1:I,I)
|
||
|
*
|
||
|
CALL SSCAL( I-1, -TAU( I ), T( 1, I ), 1 )
|
||
|
CALL STRMV( 'Upper', 'No Transpose', 'NON-UNIT',
|
||
|
$ I-1, T, LDT,
|
||
|
$ T( 1, I ), 1 )
|
||
|
T( I, I ) = TAU( I )
|
||
|
*
|
||
|
10 CONTINUE
|
||
|
A( K+NB, NB ) = EI
|
||
|
*
|
||
|
* Compute Y(1:K,1:NB)
|
||
|
*
|
||
|
CALL SLACPY( 'ALL', K, NB, A( 1, 2 ), LDA, Y, LDY )
|
||
|
CALL STRMM( 'RIGHT', 'Lower', 'NO TRANSPOSE',
|
||
|
$ 'UNIT', K, NB,
|
||
|
$ ONE, A( K+1, 1 ), LDA, Y, LDY )
|
||
|
IF( N.GT.K+NB )
|
||
|
$ CALL SGEMM( 'NO TRANSPOSE', 'NO TRANSPOSE', K,
|
||
|
$ NB, N-K-NB, ONE,
|
||
|
$ A( 1, 2+NB ), LDA, A( K+1+NB, 1 ), LDA, ONE, Y,
|
||
|
$ LDY )
|
||
|
CALL STRMM( 'RIGHT', 'Upper', 'NO TRANSPOSE',
|
||
|
$ 'NON-UNIT', K, NB,
|
||
|
$ ONE, T, LDT, Y, LDY )
|
||
|
*
|
||
|
RETURN
|
||
|
*
|
||
|
* End of SLAHR2
|
||
|
*
|
||
|
END
|