You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
365 lines
9.7 KiB
365 lines
9.7 KiB
2 years ago
|
*> \brief \b SLAIC1 applies one step of incremental condition estimation.
|
||
|
*
|
||
|
* =========== DOCUMENTATION ===========
|
||
|
*
|
||
|
* Online html documentation available at
|
||
|
* http://www.netlib.org/lapack/explore-html/
|
||
|
*
|
||
|
*> \htmlonly
|
||
|
*> Download SLAIC1 + dependencies
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slaic1.f">
|
||
|
*> [TGZ]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slaic1.f">
|
||
|
*> [ZIP]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slaic1.f">
|
||
|
*> [TXT]</a>
|
||
|
*> \endhtmlonly
|
||
|
*
|
||
|
* Definition:
|
||
|
* ===========
|
||
|
*
|
||
|
* SUBROUTINE SLAIC1( JOB, J, X, SEST, W, GAMMA, SESTPR, S, C )
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
* INTEGER J, JOB
|
||
|
* REAL C, GAMMA, S, SEST, SESTPR
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
* REAL W( J ), X( J )
|
||
|
* ..
|
||
|
*
|
||
|
*
|
||
|
*> \par Purpose:
|
||
|
* =============
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*> SLAIC1 applies one step of incremental condition estimation in
|
||
|
*> its simplest version:
|
||
|
*>
|
||
|
*> Let x, twonorm(x) = 1, be an approximate singular vector of an j-by-j
|
||
|
*> lower triangular matrix L, such that
|
||
|
*> twonorm(L*x) = sest
|
||
|
*> Then SLAIC1 computes sestpr, s, c such that
|
||
|
*> the vector
|
||
|
*> [ s*x ]
|
||
|
*> xhat = [ c ]
|
||
|
*> is an approximate singular vector of
|
||
|
*> [ L 0 ]
|
||
|
*> Lhat = [ w**T gamma ]
|
||
|
*> in the sense that
|
||
|
*> twonorm(Lhat*xhat) = sestpr.
|
||
|
*>
|
||
|
*> Depending on JOB, an estimate for the largest or smallest singular
|
||
|
*> value is computed.
|
||
|
*>
|
||
|
*> Note that [s c]**T and sestpr**2 is an eigenpair of the system
|
||
|
*>
|
||
|
*> diag(sest*sest, 0) + [alpha gamma] * [ alpha ]
|
||
|
*> [ gamma ]
|
||
|
*>
|
||
|
*> where alpha = x**T*w.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Arguments:
|
||
|
* ==========
|
||
|
*
|
||
|
*> \param[in] JOB
|
||
|
*> \verbatim
|
||
|
*> JOB is INTEGER
|
||
|
*> = 1: an estimate for the largest singular value is computed.
|
||
|
*> = 2: an estimate for the smallest singular value is computed.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] J
|
||
|
*> \verbatim
|
||
|
*> J is INTEGER
|
||
|
*> Length of X and W
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] X
|
||
|
*> \verbatim
|
||
|
*> X is REAL array, dimension (J)
|
||
|
*> The j-vector x.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] SEST
|
||
|
*> \verbatim
|
||
|
*> SEST is REAL
|
||
|
*> Estimated singular value of j by j matrix L
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] W
|
||
|
*> \verbatim
|
||
|
*> W is REAL array, dimension (J)
|
||
|
*> The j-vector w.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] GAMMA
|
||
|
*> \verbatim
|
||
|
*> GAMMA is REAL
|
||
|
*> The diagonal element gamma.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] SESTPR
|
||
|
*> \verbatim
|
||
|
*> SESTPR is REAL
|
||
|
*> Estimated singular value of (j+1) by (j+1) matrix Lhat.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] S
|
||
|
*> \verbatim
|
||
|
*> S is REAL
|
||
|
*> Sine needed in forming xhat.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] C
|
||
|
*> \verbatim
|
||
|
*> C is REAL
|
||
|
*> Cosine needed in forming xhat.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Authors:
|
||
|
* ========
|
||
|
*
|
||
|
*> \author Univ. of Tennessee
|
||
|
*> \author Univ. of California Berkeley
|
||
|
*> \author Univ. of Colorado Denver
|
||
|
*> \author NAG Ltd.
|
||
|
*
|
||
|
*> \ingroup realOTHERauxiliary
|
||
|
*
|
||
|
* =====================================================================
|
||
|
SUBROUTINE SLAIC1( JOB, J, X, SEST, W, GAMMA, SESTPR, S, C )
|
||
|
*
|
||
|
* -- LAPACK auxiliary routine --
|
||
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
INTEGER J, JOB
|
||
|
REAL C, GAMMA, S, SEST, SESTPR
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
REAL W( J ), X( J )
|
||
|
* ..
|
||
|
*
|
||
|
* =====================================================================
|
||
|
*
|
||
|
* .. Parameters ..
|
||
|
REAL ZERO, ONE, TWO
|
||
|
PARAMETER ( ZERO = 0.0E0, ONE = 1.0E0, TWO = 2.0E0 )
|
||
|
REAL HALF, FOUR
|
||
|
PARAMETER ( HALF = 0.5E0, FOUR = 4.0E0 )
|
||
|
* ..
|
||
|
* .. Local Scalars ..
|
||
|
REAL ABSALP, ABSEST, ABSGAM, ALPHA, B, COSINE, EPS,
|
||
|
$ NORMA, S1, S2, SINE, T, TEST, TMP, ZETA1, ZETA2
|
||
|
* ..
|
||
|
* .. Intrinsic Functions ..
|
||
|
INTRINSIC ABS, MAX, SIGN, SQRT
|
||
|
* ..
|
||
|
* .. External Functions ..
|
||
|
REAL SDOT, SLAMCH
|
||
|
EXTERNAL SDOT, SLAMCH
|
||
|
* ..
|
||
|
* .. Executable Statements ..
|
||
|
*
|
||
|
EPS = SLAMCH( 'Epsilon' )
|
||
|
ALPHA = SDOT( J, X, 1, W, 1 )
|
||
|
*
|
||
|
ABSALP = ABS( ALPHA )
|
||
|
ABSGAM = ABS( GAMMA )
|
||
|
ABSEST = ABS( SEST )
|
||
|
*
|
||
|
IF( JOB.EQ.1 ) THEN
|
||
|
*
|
||
|
* Estimating largest singular value
|
||
|
*
|
||
|
* special cases
|
||
|
*
|
||
|
IF( SEST.EQ.ZERO ) THEN
|
||
|
S1 = MAX( ABSGAM, ABSALP )
|
||
|
IF( S1.EQ.ZERO ) THEN
|
||
|
S = ZERO
|
||
|
C = ONE
|
||
|
SESTPR = ZERO
|
||
|
ELSE
|
||
|
S = ALPHA / S1
|
||
|
C = GAMMA / S1
|
||
|
TMP = SQRT( S*S+C*C )
|
||
|
S = S / TMP
|
||
|
C = C / TMP
|
||
|
SESTPR = S1*TMP
|
||
|
END IF
|
||
|
RETURN
|
||
|
ELSE IF( ABSGAM.LE.EPS*ABSEST ) THEN
|
||
|
S = ONE
|
||
|
C = ZERO
|
||
|
TMP = MAX( ABSEST, ABSALP )
|
||
|
S1 = ABSEST / TMP
|
||
|
S2 = ABSALP / TMP
|
||
|
SESTPR = TMP*SQRT( S1*S1+S2*S2 )
|
||
|
RETURN
|
||
|
ELSE IF( ABSALP.LE.EPS*ABSEST ) THEN
|
||
|
S1 = ABSGAM
|
||
|
S2 = ABSEST
|
||
|
IF( S1.LE.S2 ) THEN
|
||
|
S = ONE
|
||
|
C = ZERO
|
||
|
SESTPR = S2
|
||
|
ELSE
|
||
|
S = ZERO
|
||
|
C = ONE
|
||
|
SESTPR = S1
|
||
|
END IF
|
||
|
RETURN
|
||
|
ELSE IF( ABSEST.LE.EPS*ABSALP .OR. ABSEST.LE.EPS*ABSGAM ) THEN
|
||
|
S1 = ABSGAM
|
||
|
S2 = ABSALP
|
||
|
IF( S1.LE.S2 ) THEN
|
||
|
TMP = S1 / S2
|
||
|
S = SQRT( ONE+TMP*TMP )
|
||
|
SESTPR = S2*S
|
||
|
C = ( GAMMA / S2 ) / S
|
||
|
S = SIGN( ONE, ALPHA ) / S
|
||
|
ELSE
|
||
|
TMP = S2 / S1
|
||
|
C = SQRT( ONE+TMP*TMP )
|
||
|
SESTPR = S1*C
|
||
|
S = ( ALPHA / S1 ) / C
|
||
|
C = SIGN( ONE, GAMMA ) / C
|
||
|
END IF
|
||
|
RETURN
|
||
|
ELSE
|
||
|
*
|
||
|
* normal case
|
||
|
*
|
||
|
ZETA1 = ALPHA / ABSEST
|
||
|
ZETA2 = GAMMA / ABSEST
|
||
|
*
|
||
|
B = ( ONE-ZETA1*ZETA1-ZETA2*ZETA2 )*HALF
|
||
|
C = ZETA1*ZETA1
|
||
|
IF( B.GT.ZERO ) THEN
|
||
|
T = C / ( B+SQRT( B*B+C ) )
|
||
|
ELSE
|
||
|
T = SQRT( B*B+C ) - B
|
||
|
END IF
|
||
|
*
|
||
|
SINE = -ZETA1 / T
|
||
|
COSINE = -ZETA2 / ( ONE+T )
|
||
|
TMP = SQRT( SINE*SINE+COSINE*COSINE )
|
||
|
S = SINE / TMP
|
||
|
C = COSINE / TMP
|
||
|
SESTPR = SQRT( T+ONE )*ABSEST
|
||
|
RETURN
|
||
|
END IF
|
||
|
*
|
||
|
ELSE IF( JOB.EQ.2 ) THEN
|
||
|
*
|
||
|
* Estimating smallest singular value
|
||
|
*
|
||
|
* special cases
|
||
|
*
|
||
|
IF( SEST.EQ.ZERO ) THEN
|
||
|
SESTPR = ZERO
|
||
|
IF( MAX( ABSGAM, ABSALP ).EQ.ZERO ) THEN
|
||
|
SINE = ONE
|
||
|
COSINE = ZERO
|
||
|
ELSE
|
||
|
SINE = -GAMMA
|
||
|
COSINE = ALPHA
|
||
|
END IF
|
||
|
S1 = MAX( ABS( SINE ), ABS( COSINE ) )
|
||
|
S = SINE / S1
|
||
|
C = COSINE / S1
|
||
|
TMP = SQRT( S*S+C*C )
|
||
|
S = S / TMP
|
||
|
C = C / TMP
|
||
|
RETURN
|
||
|
ELSE IF( ABSGAM.LE.EPS*ABSEST ) THEN
|
||
|
S = ZERO
|
||
|
C = ONE
|
||
|
SESTPR = ABSGAM
|
||
|
RETURN
|
||
|
ELSE IF( ABSALP.LE.EPS*ABSEST ) THEN
|
||
|
S1 = ABSGAM
|
||
|
S2 = ABSEST
|
||
|
IF( S1.LE.S2 ) THEN
|
||
|
S = ZERO
|
||
|
C = ONE
|
||
|
SESTPR = S1
|
||
|
ELSE
|
||
|
S = ONE
|
||
|
C = ZERO
|
||
|
SESTPR = S2
|
||
|
END IF
|
||
|
RETURN
|
||
|
ELSE IF( ABSEST.LE.EPS*ABSALP .OR. ABSEST.LE.EPS*ABSGAM ) THEN
|
||
|
S1 = ABSGAM
|
||
|
S2 = ABSALP
|
||
|
IF( S1.LE.S2 ) THEN
|
||
|
TMP = S1 / S2
|
||
|
C = SQRT( ONE+TMP*TMP )
|
||
|
SESTPR = ABSEST*( TMP / C )
|
||
|
S = -( GAMMA / S2 ) / C
|
||
|
C = SIGN( ONE, ALPHA ) / C
|
||
|
ELSE
|
||
|
TMP = S2 / S1
|
||
|
S = SQRT( ONE+TMP*TMP )
|
||
|
SESTPR = ABSEST / S
|
||
|
C = ( ALPHA / S1 ) / S
|
||
|
S = -SIGN( ONE, GAMMA ) / S
|
||
|
END IF
|
||
|
RETURN
|
||
|
ELSE
|
||
|
*
|
||
|
* normal case
|
||
|
*
|
||
|
ZETA1 = ALPHA / ABSEST
|
||
|
ZETA2 = GAMMA / ABSEST
|
||
|
*
|
||
|
NORMA = MAX( ONE+ZETA1*ZETA1+ABS( ZETA1*ZETA2 ),
|
||
|
$ ABS( ZETA1*ZETA2 )+ZETA2*ZETA2 )
|
||
|
*
|
||
|
* See if root is closer to zero or to ONE
|
||
|
*
|
||
|
TEST = ONE + TWO*( ZETA1-ZETA2 )*( ZETA1+ZETA2 )
|
||
|
IF( TEST.GE.ZERO ) THEN
|
||
|
*
|
||
|
* root is close to zero, compute directly
|
||
|
*
|
||
|
B = ( ZETA1*ZETA1+ZETA2*ZETA2+ONE )*HALF
|
||
|
C = ZETA2*ZETA2
|
||
|
T = C / ( B+SQRT( ABS( B*B-C ) ) )
|
||
|
SINE = ZETA1 / ( ONE-T )
|
||
|
COSINE = -ZETA2 / T
|
||
|
SESTPR = SQRT( T+FOUR*EPS*EPS*NORMA )*ABSEST
|
||
|
ELSE
|
||
|
*
|
||
|
* root is closer to ONE, shift by that amount
|
||
|
*
|
||
|
B = ( ZETA2*ZETA2+ZETA1*ZETA1-ONE )*HALF
|
||
|
C = ZETA1*ZETA1
|
||
|
IF( B.GE.ZERO ) THEN
|
||
|
T = -C / ( B+SQRT( B*B+C ) )
|
||
|
ELSE
|
||
|
T = B - SQRT( B*B+C )
|
||
|
END IF
|
||
|
SINE = -ZETA1 / T
|
||
|
COSINE = -ZETA2 / ( ONE+T )
|
||
|
SESTPR = SQRT( ONE+T+FOUR*EPS*EPS*NORMA )*ABSEST
|
||
|
END IF
|
||
|
TMP = SQRT( SINE*SINE+COSINE*COSINE )
|
||
|
S = SINE / TMP
|
||
|
C = COSINE / TMP
|
||
|
RETURN
|
||
|
*
|
||
|
END IF
|
||
|
END IF
|
||
|
RETURN
|
||
|
*
|
||
|
* End of SLAIC1
|
||
|
*
|
||
|
END
|