You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
245 lines
7.1 KiB
245 lines
7.1 KiB
2 years ago
|
*> \brief \b SLAORHR_COL_GETRFNP
|
||
|
*
|
||
|
* =========== DOCUMENTATION ===========
|
||
|
*
|
||
|
* Online html documentation available at
|
||
|
* http://www.netlib.org/lapack/explore-html/
|
||
|
*
|
||
|
*> \htmlonly
|
||
|
*> Download SLAORHR_COL_GETRFNP + dependencies
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slaorhr_col_getrfnp.f">
|
||
|
*> [TGZ]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slaorhr_col_getrfnp.f">
|
||
|
*> [ZIP]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slaorhr_col_getrfnp.f">
|
||
|
*> [TXT]</a>
|
||
|
*> \endhtmlonly
|
||
|
*
|
||
|
* Definition:
|
||
|
* ===========
|
||
|
*
|
||
|
* SUBROUTINE SLAORHR_COL_GETRFNP( M, N, A, LDA, D, INFO )
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
* INTEGER INFO, LDA, M, N
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
* REAL A( LDA, * ), D( * )
|
||
|
* ..
|
||
|
*
|
||
|
*
|
||
|
*> \par Purpose:
|
||
|
* =============
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*> SLAORHR_COL_GETRFNP computes the modified LU factorization without
|
||
|
*> pivoting of a real general M-by-N matrix A. The factorization has
|
||
|
*> the form:
|
||
|
*>
|
||
|
*> A - S = L * U,
|
||
|
*>
|
||
|
*> where:
|
||
|
*> S is a m-by-n diagonal sign matrix with the diagonal D, so that
|
||
|
*> D(i) = S(i,i), 1 <= i <= min(M,N). The diagonal D is constructed
|
||
|
*> as D(i)=-SIGN(A(i,i)), where A(i,i) is the value after performing
|
||
|
*> i-1 steps of Gaussian elimination. This means that the diagonal
|
||
|
*> element at each step of "modified" Gaussian elimination is
|
||
|
*> at least one in absolute value (so that division-by-zero not
|
||
|
*> not possible during the division by the diagonal element);
|
||
|
*>
|
||
|
*> L is a M-by-N lower triangular matrix with unit diagonal elements
|
||
|
*> (lower trapezoidal if M > N);
|
||
|
*>
|
||
|
*> and U is a M-by-N upper triangular matrix
|
||
|
*> (upper trapezoidal if M < N).
|
||
|
*>
|
||
|
*> This routine is an auxiliary routine used in the Householder
|
||
|
*> reconstruction routine SORHR_COL. In SORHR_COL, this routine is
|
||
|
*> applied to an M-by-N matrix A with orthonormal columns, where each
|
||
|
*> element is bounded by one in absolute value. With the choice of
|
||
|
*> the matrix S above, one can show that the diagonal element at each
|
||
|
*> step of Gaussian elimination is the largest (in absolute value) in
|
||
|
*> the column on or below the diagonal, so that no pivoting is required
|
||
|
*> for numerical stability [1].
|
||
|
*>
|
||
|
*> For more details on the Householder reconstruction algorithm,
|
||
|
*> including the modified LU factorization, see [1].
|
||
|
*>
|
||
|
*> This is the blocked right-looking version of the algorithm,
|
||
|
*> calling Level 3 BLAS to update the submatrix. To factorize a block,
|
||
|
*> this routine calls the recursive routine SLAORHR_COL_GETRFNP2.
|
||
|
*>
|
||
|
*> [1] "Reconstructing Householder vectors from tall-skinny QR",
|
||
|
*> G. Ballard, J. Demmel, L. Grigori, M. Jacquelin, H.D. Nguyen,
|
||
|
*> E. Solomonik, J. Parallel Distrib. Comput.,
|
||
|
*> vol. 85, pp. 3-31, 2015.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Arguments:
|
||
|
* ==========
|
||
|
*
|
||
|
*> \param[in] M
|
||
|
*> \verbatim
|
||
|
*> M is INTEGER
|
||
|
*> The number of rows of the matrix A. M >= 0.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] N
|
||
|
*> \verbatim
|
||
|
*> N is INTEGER
|
||
|
*> The number of columns of the matrix A. N >= 0.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] A
|
||
|
*> \verbatim
|
||
|
*> A is REAL array, dimension (LDA,N)
|
||
|
*> On entry, the M-by-N matrix to be factored.
|
||
|
*> On exit, the factors L and U from the factorization
|
||
|
*> A-S=L*U; the unit diagonal elements of L are not stored.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDA
|
||
|
*> \verbatim
|
||
|
*> LDA is INTEGER
|
||
|
*> The leading dimension of the array A. LDA >= max(1,M).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] D
|
||
|
*> \verbatim
|
||
|
*> D is REAL array, dimension min(M,N)
|
||
|
*> The diagonal elements of the diagonal M-by-N sign matrix S,
|
||
|
*> D(i) = S(i,i), where 1 <= i <= min(M,N). The elements can
|
||
|
*> be only plus or minus one.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] INFO
|
||
|
*> \verbatim
|
||
|
*> INFO is INTEGER
|
||
|
*> = 0: successful exit
|
||
|
*> < 0: if INFO = -i, the i-th argument had an illegal value
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
* Authors:
|
||
|
* ========
|
||
|
*
|
||
|
*> \author Univ. of Tennessee
|
||
|
*> \author Univ. of California Berkeley
|
||
|
*> \author Univ. of Colorado Denver
|
||
|
*> \author NAG Ltd.
|
||
|
*
|
||
|
*> \ingroup realGEcomputational
|
||
|
*
|
||
|
*> \par Contributors:
|
||
|
* ==================
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*> November 2019, Igor Kozachenko,
|
||
|
*> Computer Science Division,
|
||
|
*> University of California, Berkeley
|
||
|
*>
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* =====================================================================
|
||
|
SUBROUTINE SLAORHR_COL_GETRFNP( M, N, A, LDA, D, INFO )
|
||
|
IMPLICIT NONE
|
||
|
*
|
||
|
* -- LAPACK computational routine --
|
||
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
INTEGER INFO, LDA, M, N
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
REAL A( LDA, * ), D( * )
|
||
|
* ..
|
||
|
*
|
||
|
* =====================================================================
|
||
|
*
|
||
|
* .. Parameters ..
|
||
|
REAL ONE
|
||
|
PARAMETER ( ONE = 1.0E+0 )
|
||
|
* ..
|
||
|
* .. Local Scalars ..
|
||
|
INTEGER IINFO, J, JB, NB
|
||
|
* ..
|
||
|
* .. External Subroutines ..
|
||
|
EXTERNAL SGEMM, SLAORHR_COL_GETRFNP2, STRSM, XERBLA
|
||
|
* ..
|
||
|
* .. External Functions ..
|
||
|
INTEGER ILAENV
|
||
|
EXTERNAL ILAENV
|
||
|
* ..
|
||
|
* .. Intrinsic Functions ..
|
||
|
INTRINSIC MAX, MIN
|
||
|
* ..
|
||
|
* .. Executable Statements ..
|
||
|
*
|
||
|
* Test the input parameters.
|
||
|
*
|
||
|
INFO = 0
|
||
|
IF( M.LT.0 ) THEN
|
||
|
INFO = -1
|
||
|
ELSE IF( N.LT.0 ) THEN
|
||
|
INFO = -2
|
||
|
ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
|
||
|
INFO = -4
|
||
|
END IF
|
||
|
IF( INFO.NE.0 ) THEN
|
||
|
CALL XERBLA( 'SLAORHR_COL_GETRFNP', -INFO )
|
||
|
RETURN
|
||
|
END IF
|
||
|
*
|
||
|
* Quick return if possible
|
||
|
*
|
||
|
IF( MIN( M, N ).EQ.0 )
|
||
|
$ RETURN
|
||
|
*
|
||
|
* Determine the block size for this environment.
|
||
|
*
|
||
|
|
||
|
NB = ILAENV( 1, 'SLAORHR_COL_GETRFNP', ' ', M, N, -1, -1 )
|
||
|
|
||
|
IF( NB.LE.1 .OR. NB.GE.MIN( M, N ) ) THEN
|
||
|
*
|
||
|
* Use unblocked code.
|
||
|
*
|
||
|
CALL SLAORHR_COL_GETRFNP2( M, N, A, LDA, D, INFO )
|
||
|
ELSE
|
||
|
*
|
||
|
* Use blocked code.
|
||
|
*
|
||
|
DO J = 1, MIN( M, N ), NB
|
||
|
JB = MIN( MIN( M, N )-J+1, NB )
|
||
|
*
|
||
|
* Factor diagonal and subdiagonal blocks.
|
||
|
*
|
||
|
CALL SLAORHR_COL_GETRFNP2( M-J+1, JB, A( J, J ), LDA,
|
||
|
$ D( J ), IINFO )
|
||
|
*
|
||
|
IF( J+JB.LE.N ) THEN
|
||
|
*
|
||
|
* Compute block row of U.
|
||
|
*
|
||
|
CALL STRSM( 'Left', 'Lower', 'No transpose', 'Unit', JB,
|
||
|
$ N-J-JB+1, ONE, A( J, J ), LDA, A( J, J+JB ),
|
||
|
$ LDA )
|
||
|
IF( J+JB.LE.M ) THEN
|
||
|
*
|
||
|
* Update trailing submatrix.
|
||
|
*
|
||
|
CALL SGEMM( 'No transpose', 'No transpose', M-J-JB+1,
|
||
|
$ N-J-JB+1, JB, -ONE, A( J+JB, J ), LDA,
|
||
|
$ A( J, J+JB ), LDA, ONE, A( J+JB, J+JB ),
|
||
|
$ LDA )
|
||
|
END IF
|
||
|
END IF
|
||
|
END DO
|
||
|
END IF
|
||
|
RETURN
|
||
|
*
|
||
|
* End of SLAORHR_COL_GETRFNP
|
||
|
*
|
||
|
END
|