Cloned library LAPACK-3.11.0 with extra build files for internal package management.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

533 lines
17 KiB

2 years ago
*> \brief \b SLAQZ4
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download SLAQZ4 + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slaqz4.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slaqz4.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slaqz4.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE SLAQZ4( ILSCHUR, ILQ, ILZ, N, ILO, IHI, NSHIFTS,
* $ NBLOCK_DESIRED, SR, SI, SS, A, LDA, B, LDB, Q, LDQ, Z, LDZ,
* $ QC, LDQC, ZC, LDZC, WORK, LWORK, INFO )
* IMPLICIT NONE
*
* Function arguments
* LOGICAL, INTENT( IN ) :: ILSCHUR, ILQ, ILZ
* INTEGER, INTENT( IN ) :: N, ILO, IHI, LDA, LDB, LDQ, LDZ, LWORK,
* $ NSHIFTS, NBLOCK_DESIRED, LDQC, LDZC
*
* REAL, INTENT( INOUT ) :: A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
* $ Z( LDZ, * ), QC( LDQC, * ), ZC( LDZC, * ), WORK( * ), SR( * ),
* $ SI( * ), SS( * )
*
* INTEGER, INTENT( OUT ) :: INFO
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> SLAQZ4 Executes a single multishift QZ sweep
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] ILSCHUR
*> \verbatim
*> ILSCHUR is LOGICAL
*> Determines whether or not to update the full Schur form
*> \endverbatim
*>
*> \param[in] ILQ
*> \verbatim
*> ILQ is LOGICAL
*> Determines whether or not to update the matrix Q
*> \endverbatim
*>
*> \param[in] ILZ
*> \verbatim
*> ILZ is LOGICAL
*> Determines whether or not to update the matrix Z
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The order of the matrices A, B, Q, and Z. N >= 0.
*> \endverbatim
*>
*> \param[in] ILO
*> \verbatim
*> ILO is INTEGER
*> \endverbatim
*>
*> \param[in] IHI
*> \verbatim
*> IHI is INTEGER
*> \endverbatim
*>
*> \param[in] NSHIFTS
*> \verbatim
*> NSHIFTS is INTEGER
*> The desired number of shifts to use
*> \endverbatim
*>
*> \param[in] NBLOCK_DESIRED
*> \verbatim
*> NBLOCK_DESIRED is INTEGER
*> The desired size of the computational windows
*> \endverbatim
*>
*> \param[in] SR
*> \verbatim
*> SR is REAL array. SR contains
*> the real parts of the shifts to use.
*> \endverbatim
*>
*> \param[in] SI
*> \verbatim
*> SI is REAL array. SI contains
*> the imaginary parts of the shifts to use.
*> \endverbatim
*>
*> \param[in] SS
*> \verbatim
*> SS is REAL array. SS contains
*> the scale of the shifts to use.
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*> A is REAL array, dimension (LDA, N)
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the array A. LDA >= max( 1, N ).
*> \endverbatim
*>
*> \param[in,out] B
*> \verbatim
*> B is REAL array, dimension (LDB, N)
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*> LDB is INTEGER
*> The leading dimension of the array B. LDB >= max( 1, N ).
*> \endverbatim
*>
*> \param[in,out] Q
*> \verbatim
*> Q is REAL array, dimension (LDQ, N)
*> \endverbatim
*>
*> \param[in] LDQ
*> \verbatim
*> LDQ is INTEGER
*> \endverbatim
*>
*> \param[in,out] Z
*> \verbatim
*> Z is REAL array, dimension (LDZ, N)
*> \endverbatim
*>
*> \param[in] LDZ
*> \verbatim
*> LDZ is INTEGER
*> \endverbatim
*>
*> \param[in,out] QC
*> \verbatim
*> QC is REAL array, dimension (LDQC, NBLOCK_DESIRED)
*> \endverbatim
*>
*> \param[in] LDQC
*> \verbatim
*> LDQC is INTEGER
*> \endverbatim
*>
*> \param[in,out] ZC
*> \verbatim
*> ZC is REAL array, dimension (LDZC, NBLOCK_DESIRED)
*> \endverbatim
*>
*> \param[in] LDZC
*> \verbatim
*> LDZ is INTEGER
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is REAL array, dimension (MAX(1,LWORK))
*> On exit, if INFO >= 0, WORK(1) returns the optimal LWORK.
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*> LWORK is INTEGER
*> The dimension of the array WORK. LWORK >= max(1,N).
*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
*> message related to LWORK is issued by XERBLA.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value
*> \endverbatim
*
* Authors:
* ========
*
*> \author Thijs Steel, KU Leuven
*
*> \date May 2020
*
*> \ingroup doubleGEcomputational
*>
* =====================================================================
SUBROUTINE SLAQZ4( ILSCHUR, ILQ, ILZ, N, ILO, IHI, NSHIFTS,
$ NBLOCK_DESIRED, SR, SI, SS, A, LDA, B, LDB, Q,
$ LDQ, Z, LDZ, QC, LDQC, ZC, LDZC, WORK, LWORK,
$ INFO )
IMPLICIT NONE
* Function arguments
LOGICAL, INTENT( IN ) :: ILSCHUR, ILQ, ILZ
INTEGER, INTENT( IN ) :: N, ILO, IHI, LDA, LDB, LDQ, LDZ, LWORK,
$ NSHIFTS, NBLOCK_DESIRED, LDQC, LDZC
REAL, INTENT( INOUT ) :: A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
$ Z( LDZ, * ), QC( LDQC, * ), ZC( LDZC, * ), WORK( * ), SR( * ),
$ SI( * ), SS( * )
INTEGER, INTENT( OUT ) :: INFO
* Parameters
REAL :: ZERO, ONE, HALF
PARAMETER( ZERO = 0.0, ONE = 1.0, HALF = 0.5 )
* Local scalars
INTEGER :: I, J, NS, ISTARTM, ISTOPM, SHEIGHT, SWIDTH, K, NP,
$ ISTARTB, ISTOPB, ISHIFT, NBLOCK, NPOS
REAL :: TEMP, V( 3 ), C1, S1, C2, S2, SWAP
*
* External functions
EXTERNAL :: XERBLA, SGEMM, SLAQZ1, SLAQZ2, SLASET, SLARTG, SROT,
$ SLACPY
INFO = 0
IF ( NBLOCK_DESIRED .LT. NSHIFTS+1 ) THEN
INFO = -8
END IF
IF ( LWORK .EQ.-1 ) THEN
* workspace query, quick return
WORK( 1 ) = N*NBLOCK_DESIRED
RETURN
ELSE IF ( LWORK .LT. N*NBLOCK_DESIRED ) THEN
INFO = -25
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'SLAQZ4', -INFO )
RETURN
END IF
* Executable statements
IF ( NSHIFTS .LT. 2 ) THEN
RETURN
END IF
IF ( ILO .GE. IHI ) THEN
RETURN
END IF
IF ( ILSCHUR ) THEN
ISTARTM = 1
ISTOPM = N
ELSE
ISTARTM = ILO
ISTOPM = IHI
END IF
* Shuffle shifts into pairs of real shifts and pairs
* of complex conjugate shifts assuming complex
* conjugate shifts are already adjacent to one
* another
DO I = 1, NSHIFTS-2, 2
IF( SI( I ).NE.-SI( I+1 ) ) THEN
*
SWAP = SR( I )
SR( I ) = SR( I+1 )
SR( I+1 ) = SR( I+2 )
SR( I+2 ) = SWAP
SWAP = SI( I )
SI( I ) = SI( I+1 )
SI( I+1 ) = SI( I+2 )
SI( I+2 ) = SWAP
SWAP = SS( I )
SS( I ) = SS( I+1 )
SS( I+1 ) = SS( I+2 )
SS( I+2 ) = SWAP
END IF
END DO
* NSHFTS is supposed to be even, but if it is odd,
* then simply reduce it by one. The shuffle above
* ensures that the dropped shift is real and that
* the remaining shifts are paired.
NS = NSHIFTS-MOD( NSHIFTS, 2 )
NPOS = MAX( NBLOCK_DESIRED-NS, 1 )
* The following block introduces the shifts and chases
* them down one by one just enough to make space for
* the other shifts. The near-the-diagonal block is
* of size (ns+1) x ns.
CALL SLASET( 'FULL', NS+1, NS+1, ZERO, ONE, QC, LDQC )
CALL SLASET( 'FULL', NS, NS, ZERO, ONE, ZC, LDZC )
DO I = 1, NS, 2
* Introduce the shift
CALL SLAQZ1( A( ILO, ILO ), LDA, B( ILO, ILO ), LDB, SR( I ),
$ SR( I+1 ), SI( I ), SS( I ), SS( I+1 ), V )
TEMP = V( 2 )
CALL SLARTG( TEMP, V( 3 ), C1, S1, V( 2 ) )
CALL SLARTG( V( 1 ), V( 2 ), C2, S2, TEMP )
CALL SROT( NS, A( ILO+1, ILO ), LDA, A( ILO+2, ILO ), LDA, C1,
$ S1 )
CALL SROT( NS, A( ILO, ILO ), LDA, A( ILO+1, ILO ), LDA, C2,
$ S2 )
CALL SROT( NS, B( ILO+1, ILO ), LDB, B( ILO+2, ILO ), LDB, C1,
$ S1 )
CALL SROT( NS, B( ILO, ILO ), LDB, B( ILO+1, ILO ), LDB, C2,
$ S2 )
CALL SROT( NS+1, QC( 1, 2 ), 1, QC( 1, 3 ), 1, C1, S1 )
CALL SROT( NS+1, QC( 1, 1 ), 1, QC( 1, 2 ), 1, C2, S2 )
* Chase the shift down
DO J = 1, NS-1-I
CALL SLAQZ2( .TRUE., .TRUE., J, 1, NS, IHI-ILO+1, A( ILO,
$ ILO ), LDA, B( ILO, ILO ), LDB, NS+1, 1, QC,
$ LDQC, NS, 1, ZC, LDZC )
END DO
END DO
* Update the rest of the pencil
* Update A(ilo:ilo+ns,ilo+ns:istopm) and B(ilo:ilo+ns,ilo+ns:istopm)
* from the left with Qc(1:ns+1,1:ns+1)'
SHEIGHT = NS+1
SWIDTH = ISTOPM-( ILO+NS )+1
IF ( SWIDTH > 0 ) THEN
CALL SGEMM( 'T', 'N', SHEIGHT, SWIDTH, SHEIGHT, ONE, QC, LDQC,
$ A( ILO, ILO+NS ), LDA, ZERO, WORK, SHEIGHT )
CALL SLACPY( 'ALL', SHEIGHT, SWIDTH, WORK, SHEIGHT, A( ILO,
$ ILO+NS ), LDA )
CALL SGEMM( 'T', 'N', SHEIGHT, SWIDTH, SHEIGHT, ONE, QC, LDQC,
$ B( ILO, ILO+NS ), LDB, ZERO, WORK, SHEIGHT )
CALL SLACPY( 'ALL', SHEIGHT, SWIDTH, WORK, SHEIGHT, B( ILO,
$ ILO+NS ), LDB )
END IF
IF ( ILQ ) THEN
CALL SGEMM( 'N', 'N', N, SHEIGHT, SHEIGHT, ONE, Q( 1, ILO ),
$ LDQ, QC, LDQC, ZERO, WORK, N )
CALL SLACPY( 'ALL', N, SHEIGHT, WORK, N, Q( 1, ILO ), LDQ )
END IF
* Update A(istartm:ilo-1,ilo:ilo+ns-1) and B(istartm:ilo-1,ilo:ilo+ns-1)
* from the right with Zc(1:ns,1:ns)
SHEIGHT = ILO-1-ISTARTM+1
SWIDTH = NS
IF ( SHEIGHT > 0 ) THEN
CALL SGEMM( 'N', 'N', SHEIGHT, SWIDTH, SWIDTH, ONE, A( ISTARTM,
$ ILO ), LDA, ZC, LDZC, ZERO, WORK, SHEIGHT )
CALL SLACPY( 'ALL', SHEIGHT, SWIDTH, WORK, SHEIGHT, A( ISTARTM,
$ ILO ), LDA )
CALL SGEMM( 'N', 'N', SHEIGHT, SWIDTH, SWIDTH, ONE, B( ISTARTM,
$ ILO ), LDB, ZC, LDZC, ZERO, WORK, SHEIGHT )
CALL SLACPY( 'ALL', SHEIGHT, SWIDTH, WORK, SHEIGHT, B( ISTARTM,
$ ILO ), LDB )
END IF
IF ( ILZ ) THEN
CALL SGEMM( 'N', 'N', N, SWIDTH, SWIDTH, ONE, Z( 1, ILO ), LDZ,
$ ZC, LDZC, ZERO, WORK, N )
CALL SLACPY( 'ALL', N, SWIDTH, WORK, N, Z( 1, ILO ), LDZ )
END IF
* The following block chases the shifts down to the bottom
* right block. If possible, a shift is moved down npos
* positions at a time
K = ILO
DO WHILE ( K < IHI-NS )
NP = MIN( IHI-NS-K, NPOS )
* Size of the near-the-diagonal block
NBLOCK = NS+NP
* istartb points to the first row we will be updating
ISTARTB = K+1
* istopb points to the last column we will be updating
ISTOPB = K+NBLOCK-1
CALL SLASET( 'FULL', NS+NP, NS+NP, ZERO, ONE, QC, LDQC )
CALL SLASET( 'FULL', NS+NP, NS+NP, ZERO, ONE, ZC, LDZC )
* Near the diagonal shift chase
DO I = NS-1, 0, -2
DO J = 0, NP-1
* Move down the block with index k+i+j-1, updating
* the (ns+np x ns+np) block:
* (k:k+ns+np,k:k+ns+np-1)
CALL SLAQZ2( .TRUE., .TRUE., K+I+J-1, ISTARTB, ISTOPB,
$ IHI, A, LDA, B, LDB, NBLOCK, K+1, QC, LDQC,
$ NBLOCK, K, ZC, LDZC )
END DO
END DO
* Update rest of the pencil
* Update A(k+1:k+ns+np, k+ns+np:istopm) and
* B(k+1:k+ns+np, k+ns+np:istopm)
* from the left with Qc(1:ns+np,1:ns+np)'
SHEIGHT = NS+NP
SWIDTH = ISTOPM-( K+NS+NP )+1
IF ( SWIDTH > 0 ) THEN
CALL SGEMM( 'T', 'N', SHEIGHT, SWIDTH, SHEIGHT, ONE, QC,
$ LDQC, A( K+1, K+NS+NP ), LDA, ZERO, WORK,
$ SHEIGHT )
CALL SLACPY( 'ALL', SHEIGHT, SWIDTH, WORK, SHEIGHT, A( K+1,
$ K+NS+NP ), LDA )
CALL SGEMM( 'T', 'N', SHEIGHT, SWIDTH, SHEIGHT, ONE, QC,
$ LDQC, B( K+1, K+NS+NP ), LDB, ZERO, WORK,
$ SHEIGHT )
CALL SLACPY( 'ALL', SHEIGHT, SWIDTH, WORK, SHEIGHT, B( K+1,
$ K+NS+NP ), LDB )
END IF
IF ( ILQ ) THEN
CALL SGEMM( 'N', 'N', N, NBLOCK, NBLOCK, ONE, Q( 1, K+1 ),
$ LDQ, QC, LDQC, ZERO, WORK, N )
CALL SLACPY( 'ALL', N, NBLOCK, WORK, N, Q( 1, K+1 ), LDQ )
END IF
* Update A(istartm:k,k:k+ns+npos-1) and B(istartm:k,k:k+ns+npos-1)
* from the right with Zc(1:ns+np,1:ns+np)
SHEIGHT = K-ISTARTM+1
SWIDTH = NBLOCK
IF ( SHEIGHT > 0 ) THEN
CALL SGEMM( 'N', 'N', SHEIGHT, SWIDTH, SWIDTH, ONE,
$ A( ISTARTM, K ), LDA, ZC, LDZC, ZERO, WORK,
$ SHEIGHT )
CALL SLACPY( 'ALL', SHEIGHT, SWIDTH, WORK, SHEIGHT,
$ A( ISTARTM, K ), LDA )
CALL SGEMM( 'N', 'N', SHEIGHT, SWIDTH, SWIDTH, ONE,
$ B( ISTARTM, K ), LDB, ZC, LDZC, ZERO, WORK,
$ SHEIGHT )
CALL SLACPY( 'ALL', SHEIGHT, SWIDTH, WORK, SHEIGHT,
$ B( ISTARTM, K ), LDB )
END IF
IF ( ILZ ) THEN
CALL SGEMM( 'N', 'N', N, NBLOCK, NBLOCK, ONE, Z( 1, K ),
$ LDZ, ZC, LDZC, ZERO, WORK, N )
CALL SLACPY( 'ALL', N, NBLOCK, WORK, N, Z( 1, K ), LDZ )
END IF
K = K+NP
END DO
* The following block removes the shifts from the bottom right corner
* one by one. Updates are initially applied to A(ihi-ns+1:ihi,ihi-ns:ihi).
CALL SLASET( 'FULL', NS, NS, ZERO, ONE, QC, LDQC )
CALL SLASET( 'FULL', NS+1, NS+1, ZERO, ONE, ZC, LDZC )
* istartb points to the first row we will be updating
ISTARTB = IHI-NS+1
* istopb points to the last column we will be updating
ISTOPB = IHI
DO I = 1, NS, 2
* Chase the shift down to the bottom right corner
DO ISHIFT = IHI-I-1, IHI-2
CALL SLAQZ2( .TRUE., .TRUE., ISHIFT, ISTARTB, ISTOPB, IHI,
$ A, LDA, B, LDB, NS, IHI-NS+1, QC, LDQC, NS+1,
$ IHI-NS, ZC, LDZC )
END DO
END DO
* Update rest of the pencil
* Update A(ihi-ns+1:ihi, ihi+1:istopm)
* from the left with Qc(1:ns,1:ns)'
SHEIGHT = NS
SWIDTH = ISTOPM-( IHI+1 )+1
IF ( SWIDTH > 0 ) THEN
CALL SGEMM( 'T', 'N', SHEIGHT, SWIDTH, SHEIGHT, ONE, QC, LDQC,
$ A( IHI-NS+1, IHI+1 ), LDA, ZERO, WORK, SHEIGHT )
CALL SLACPY( 'ALL', SHEIGHT, SWIDTH, WORK, SHEIGHT,
$ A( IHI-NS+1, IHI+1 ), LDA )
CALL SGEMM( 'T', 'N', SHEIGHT, SWIDTH, SHEIGHT, ONE, QC, LDQC,
$ B( IHI-NS+1, IHI+1 ), LDB, ZERO, WORK, SHEIGHT )
CALL SLACPY( 'ALL', SHEIGHT, SWIDTH, WORK, SHEIGHT,
$ B( IHI-NS+1, IHI+1 ), LDB )
END IF
IF ( ILQ ) THEN
CALL SGEMM( 'N', 'N', N, NS, NS, ONE, Q( 1, IHI-NS+1 ), LDQ,
$ QC, LDQC, ZERO, WORK, N )
CALL SLACPY( 'ALL', N, NS, WORK, N, Q( 1, IHI-NS+1 ), LDQ )
END IF
* Update A(istartm:ihi-ns,ihi-ns:ihi)
* from the right with Zc(1:ns+1,1:ns+1)
SHEIGHT = IHI-NS-ISTARTM+1
SWIDTH = NS+1
IF ( SHEIGHT > 0 ) THEN
CALL SGEMM( 'N', 'N', SHEIGHT, SWIDTH, SWIDTH, ONE, A( ISTARTM,
$ IHI-NS ), LDA, ZC, LDZC, ZERO, WORK, SHEIGHT )
CALL SLACPY( 'ALL', SHEIGHT, SWIDTH, WORK, SHEIGHT, A( ISTARTM,
$ IHI-NS ), LDA )
CALL SGEMM( 'N', 'N', SHEIGHT, SWIDTH, SWIDTH, ONE, B( ISTARTM,
$ IHI-NS ), LDB, ZC, LDZC, ZERO, WORK, SHEIGHT )
CALL SLACPY( 'ALL', SHEIGHT, SWIDTH, WORK, SHEIGHT, B( ISTARTM,
$ IHI-NS ), LDB )
END IF
IF ( ILZ ) THEN
CALL SGEMM( 'N', 'N', N, NS+1, NS+1, ONE, Z( 1, IHI-NS ), LDZ, ZC,
$ LDZC, ZERO, WORK, N )
CALL SLACPY( 'ALL', N, NS+1, WORK, N, Z( 1, IHI-NS ), LDZ )
END IF
END SUBROUTINE