You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
906 lines
32 KiB
906 lines
32 KiB
2 years ago
|
*> \brief \b SLARRE given the tridiagonal matrix T, sets small off-diagonal elements to zero and for each unreduced block Ti, finds base representations and eigenvalues.
|
||
|
*
|
||
|
* =========== DOCUMENTATION ===========
|
||
|
*
|
||
|
* Online html documentation available at
|
||
|
* http://www.netlib.org/lapack/explore-html/
|
||
|
*
|
||
|
*> \htmlonly
|
||
|
*> Download SLARRE + dependencies
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slarre.f">
|
||
|
*> [TGZ]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slarre.f">
|
||
|
*> [ZIP]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slarre.f">
|
||
|
*> [TXT]</a>
|
||
|
*> \endhtmlonly
|
||
|
*
|
||
|
* Definition:
|
||
|
* ===========
|
||
|
*
|
||
|
* SUBROUTINE SLARRE( RANGE, N, VL, VU, IL, IU, D, E, E2,
|
||
|
* RTOL1, RTOL2, SPLTOL, NSPLIT, ISPLIT, M,
|
||
|
* W, WERR, WGAP, IBLOCK, INDEXW, GERS, PIVMIN,
|
||
|
* WORK, IWORK, INFO )
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
* CHARACTER RANGE
|
||
|
* INTEGER IL, INFO, IU, M, N, NSPLIT
|
||
|
* REAL PIVMIN, RTOL1, RTOL2, SPLTOL, VL, VU
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
* INTEGER IBLOCK( * ), ISPLIT( * ), IWORK( * ),
|
||
|
* $ INDEXW( * )
|
||
|
* REAL D( * ), E( * ), E2( * ), GERS( * ),
|
||
|
* $ W( * ),WERR( * ), WGAP( * ), WORK( * )
|
||
|
* ..
|
||
|
*
|
||
|
*
|
||
|
*> \par Purpose:
|
||
|
* =============
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*> To find the desired eigenvalues of a given real symmetric
|
||
|
*> tridiagonal matrix T, SLARRE sets any "small" off-diagonal
|
||
|
*> elements to zero, and for each unreduced block T_i, it finds
|
||
|
*> (a) a suitable shift at one end of the block's spectrum,
|
||
|
*> (b) the base representation, T_i - sigma_i I = L_i D_i L_i^T, and
|
||
|
*> (c) eigenvalues of each L_i D_i L_i^T.
|
||
|
*> The representations and eigenvalues found are then used by
|
||
|
*> SSTEMR to compute the eigenvectors of T.
|
||
|
*> The accuracy varies depending on whether bisection is used to
|
||
|
*> find a few eigenvalues or the dqds algorithm (subroutine SLASQ2) to
|
||
|
*> compute all and then discard any unwanted one.
|
||
|
*> As an added benefit, SLARRE also outputs the n
|
||
|
*> Gerschgorin intervals for the matrices L_i D_i L_i^T.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Arguments:
|
||
|
* ==========
|
||
|
*
|
||
|
*> \param[in] RANGE
|
||
|
*> \verbatim
|
||
|
*> RANGE is CHARACTER*1
|
||
|
*> = 'A': ("All") all eigenvalues will be found.
|
||
|
*> = 'V': ("Value") all eigenvalues in the half-open interval
|
||
|
*> (VL, VU] will be found.
|
||
|
*> = 'I': ("Index") the IL-th through IU-th eigenvalues (of the
|
||
|
*> entire matrix) will be found.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] N
|
||
|
*> \verbatim
|
||
|
*> N is INTEGER
|
||
|
*> The order of the matrix. N > 0.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] VL
|
||
|
*> \verbatim
|
||
|
*> VL is REAL
|
||
|
*> If RANGE='V', the lower bound for the eigenvalues.
|
||
|
*> Eigenvalues less than or equal to VL, or greater than VU,
|
||
|
*> will not be returned. VL < VU.
|
||
|
*> If RANGE='I' or ='A', SLARRE computes bounds on the desired
|
||
|
*> part of the spectrum.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] VU
|
||
|
*> \verbatim
|
||
|
*> VU is REAL
|
||
|
*> If RANGE='V', the upper bound for the eigenvalues.
|
||
|
*> Eigenvalues less than or equal to VL, or greater than VU,
|
||
|
*> will not be returned. VL < VU.
|
||
|
*> If RANGE='I' or ='A', SLARRE computes bounds on the desired
|
||
|
*> part of the spectrum.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] IL
|
||
|
*> \verbatim
|
||
|
*> IL is INTEGER
|
||
|
*> If RANGE='I', the index of the
|
||
|
*> smallest eigenvalue to be returned.
|
||
|
*> 1 <= IL <= IU <= N.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] IU
|
||
|
*> \verbatim
|
||
|
*> IU is INTEGER
|
||
|
*> If RANGE='I', the index of the
|
||
|
*> largest eigenvalue to be returned.
|
||
|
*> 1 <= IL <= IU <= N.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] D
|
||
|
*> \verbatim
|
||
|
*> D is REAL array, dimension (N)
|
||
|
*> On entry, the N diagonal elements of the tridiagonal
|
||
|
*> matrix T.
|
||
|
*> On exit, the N diagonal elements of the diagonal
|
||
|
*> matrices D_i.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] E
|
||
|
*> \verbatim
|
||
|
*> E is REAL array, dimension (N)
|
||
|
*> On entry, the first (N-1) entries contain the subdiagonal
|
||
|
*> elements of the tridiagonal matrix T; E(N) need not be set.
|
||
|
*> On exit, E contains the subdiagonal elements of the unit
|
||
|
*> bidiagonal matrices L_i. The entries E( ISPLIT( I ) ),
|
||
|
*> 1 <= I <= NSPLIT, contain the base points sigma_i on output.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] E2
|
||
|
*> \verbatim
|
||
|
*> E2 is REAL array, dimension (N)
|
||
|
*> On entry, the first (N-1) entries contain the SQUARES of the
|
||
|
*> subdiagonal elements of the tridiagonal matrix T;
|
||
|
*> E2(N) need not be set.
|
||
|
*> On exit, the entries E2( ISPLIT( I ) ),
|
||
|
*> 1 <= I <= NSPLIT, have been set to zero
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] RTOL1
|
||
|
*> \verbatim
|
||
|
*> RTOL1 is REAL
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] RTOL2
|
||
|
*> \verbatim
|
||
|
*> RTOL2 is REAL
|
||
|
*> Parameters for bisection.
|
||
|
*> An interval [LEFT,RIGHT] has converged if
|
||
|
*> RIGHT-LEFT < MAX( RTOL1*GAP, RTOL2*MAX(|LEFT|,|RIGHT|) )
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] SPLTOL
|
||
|
*> \verbatim
|
||
|
*> SPLTOL is REAL
|
||
|
*> The threshold for splitting.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] NSPLIT
|
||
|
*> \verbatim
|
||
|
*> NSPLIT is INTEGER
|
||
|
*> The number of blocks T splits into. 1 <= NSPLIT <= N.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] ISPLIT
|
||
|
*> \verbatim
|
||
|
*> ISPLIT is INTEGER array, dimension (N)
|
||
|
*> The splitting points, at which T breaks up into blocks.
|
||
|
*> The first block consists of rows/columns 1 to ISPLIT(1),
|
||
|
*> the second of rows/columns ISPLIT(1)+1 through ISPLIT(2),
|
||
|
*> etc., and the NSPLIT-th consists of rows/columns
|
||
|
*> ISPLIT(NSPLIT-1)+1 through ISPLIT(NSPLIT)=N.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] M
|
||
|
*> \verbatim
|
||
|
*> M is INTEGER
|
||
|
*> The total number of eigenvalues (of all L_i D_i L_i^T)
|
||
|
*> found.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] W
|
||
|
*> \verbatim
|
||
|
*> W is REAL array, dimension (N)
|
||
|
*> The first M elements contain the eigenvalues. The
|
||
|
*> eigenvalues of each of the blocks, L_i D_i L_i^T, are
|
||
|
*> sorted in ascending order ( SLARRE may use the
|
||
|
*> remaining N-M elements as workspace).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] WERR
|
||
|
*> \verbatim
|
||
|
*> WERR is REAL array, dimension (N)
|
||
|
*> The error bound on the corresponding eigenvalue in W.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] WGAP
|
||
|
*> \verbatim
|
||
|
*> WGAP is REAL array, dimension (N)
|
||
|
*> The separation from the right neighbor eigenvalue in W.
|
||
|
*> The gap is only with respect to the eigenvalues of the same block
|
||
|
*> as each block has its own representation tree.
|
||
|
*> Exception: at the right end of a block we store the left gap
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] IBLOCK
|
||
|
*> \verbatim
|
||
|
*> IBLOCK is INTEGER array, dimension (N)
|
||
|
*> The indices of the blocks (submatrices) associated with the
|
||
|
*> corresponding eigenvalues in W; IBLOCK(i)=1 if eigenvalue
|
||
|
*> W(i) belongs to the first block from the top, =2 if W(i)
|
||
|
*> belongs to the second block, etc.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] INDEXW
|
||
|
*> \verbatim
|
||
|
*> INDEXW is INTEGER array, dimension (N)
|
||
|
*> The indices of the eigenvalues within each block (submatrix);
|
||
|
*> for example, INDEXW(i)= 10 and IBLOCK(i)=2 imply that the
|
||
|
*> i-th eigenvalue W(i) is the 10-th eigenvalue in block 2
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] GERS
|
||
|
*> \verbatim
|
||
|
*> GERS is REAL array, dimension (2*N)
|
||
|
*> The N Gerschgorin intervals (the i-th Gerschgorin interval
|
||
|
*> is (GERS(2*i-1), GERS(2*i)).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] PIVMIN
|
||
|
*> \verbatim
|
||
|
*> PIVMIN is REAL
|
||
|
*> The minimum pivot in the Sturm sequence for T.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] WORK
|
||
|
*> \verbatim
|
||
|
*> WORK is REAL array, dimension (6*N)
|
||
|
*> Workspace.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] IWORK
|
||
|
*> \verbatim
|
||
|
*> IWORK is INTEGER array, dimension (5*N)
|
||
|
*> Workspace.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] INFO
|
||
|
*> \verbatim
|
||
|
*> INFO is INTEGER
|
||
|
*> = 0: successful exit
|
||
|
*> > 0: A problem occurred in SLARRE.
|
||
|
*> < 0: One of the called subroutines signaled an internal problem.
|
||
|
*> Needs inspection of the corresponding parameter IINFO
|
||
|
*> for further information.
|
||
|
*>
|
||
|
*> =-1: Problem in SLARRD.
|
||
|
*> = 2: No base representation could be found in MAXTRY iterations.
|
||
|
*> Increasing MAXTRY and recompilation might be a remedy.
|
||
|
*> =-3: Problem in SLARRB when computing the refined root
|
||
|
*> representation for SLASQ2.
|
||
|
*> =-4: Problem in SLARRB when preforming bisection on the
|
||
|
*> desired part of the spectrum.
|
||
|
*> =-5: Problem in SLASQ2.
|
||
|
*> =-6: Problem in SLASQ2.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Authors:
|
||
|
* ========
|
||
|
*
|
||
|
*> \author Univ. of Tennessee
|
||
|
*> \author Univ. of California Berkeley
|
||
|
*> \author Univ. of Colorado Denver
|
||
|
*> \author NAG Ltd.
|
||
|
*
|
||
|
*> \ingroup OTHERauxiliary
|
||
|
*
|
||
|
*> \par Further Details:
|
||
|
* =====================
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*> The base representations are required to suffer very little
|
||
|
*> element growth and consequently define all their eigenvalues to
|
||
|
*> high relative accuracy.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
*> \par Contributors:
|
||
|
* ==================
|
||
|
*>
|
||
|
*> Beresford Parlett, University of California, Berkeley, USA \n
|
||
|
*> Jim Demmel, University of California, Berkeley, USA \n
|
||
|
*> Inderjit Dhillon, University of Texas, Austin, USA \n
|
||
|
*> Osni Marques, LBNL/NERSC, USA \n
|
||
|
*> Christof Voemel, University of California, Berkeley, USA \n
|
||
|
*>
|
||
|
* =====================================================================
|
||
|
SUBROUTINE SLARRE( RANGE, N, VL, VU, IL, IU, D, E, E2,
|
||
|
$ RTOL1, RTOL2, SPLTOL, NSPLIT, ISPLIT, M,
|
||
|
$ W, WERR, WGAP, IBLOCK, INDEXW, GERS, PIVMIN,
|
||
|
$ WORK, IWORK, INFO )
|
||
|
*
|
||
|
* -- LAPACK auxiliary routine --
|
||
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
CHARACTER RANGE
|
||
|
INTEGER IL, INFO, IU, M, N, NSPLIT
|
||
|
REAL PIVMIN, RTOL1, RTOL2, SPLTOL, VL, VU
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
INTEGER IBLOCK( * ), ISPLIT( * ), IWORK( * ),
|
||
|
$ INDEXW( * )
|
||
|
REAL D( * ), E( * ), E2( * ), GERS( * ),
|
||
|
$ W( * ),WERR( * ), WGAP( * ), WORK( * )
|
||
|
* ..
|
||
|
*
|
||
|
* =====================================================================
|
||
|
*
|
||
|
* .. Parameters ..
|
||
|
REAL FAC, FOUR, FOURTH, FUDGE, HALF, HNDRD,
|
||
|
$ MAXGROWTH, ONE, PERT, TWO, ZERO
|
||
|
PARAMETER ( ZERO = 0.0E0, ONE = 1.0E0,
|
||
|
$ TWO = 2.0E0, FOUR=4.0E0,
|
||
|
$ HNDRD = 100.0E0,
|
||
|
$ PERT = 4.0E0,
|
||
|
$ HALF = ONE/TWO, FOURTH = ONE/FOUR, FAC= HALF,
|
||
|
$ MAXGROWTH = 64.0E0, FUDGE = 2.0E0 )
|
||
|
INTEGER MAXTRY, ALLRNG, INDRNG, VALRNG
|
||
|
PARAMETER ( MAXTRY = 6, ALLRNG = 1, INDRNG = 2,
|
||
|
$ VALRNG = 3 )
|
||
|
* ..
|
||
|
* .. Local Scalars ..
|
||
|
LOGICAL FORCEB, NOREP, USEDQD
|
||
|
INTEGER CNT, CNT1, CNT2, I, IBEGIN, IDUM, IEND, IINFO,
|
||
|
$ IN, INDL, INDU, IRANGE, J, JBLK, MB, MM,
|
||
|
$ WBEGIN, WEND
|
||
|
REAL AVGAP, BSRTOL, CLWDTH, DMAX, DPIVOT, EABS,
|
||
|
$ EMAX, EOLD, EPS, GL, GU, ISLEFT, ISRGHT, RTL,
|
||
|
$ RTOL, S1, S2, SAFMIN, SGNDEF, SIGMA, SPDIAM,
|
||
|
$ TAU, TMP, TMP1
|
||
|
|
||
|
|
||
|
* ..
|
||
|
* .. Local Arrays ..
|
||
|
INTEGER ISEED( 4 )
|
||
|
* ..
|
||
|
* .. External Functions ..
|
||
|
LOGICAL LSAME
|
||
|
REAL SLAMCH
|
||
|
EXTERNAL SLAMCH, LSAME
|
||
|
|
||
|
* ..
|
||
|
* .. External Subroutines ..
|
||
|
EXTERNAL SCOPY, SLARNV, SLARRA, SLARRB, SLARRC, SLARRD,
|
||
|
$ SLASQ2, SLARRK
|
||
|
* ..
|
||
|
* .. Intrinsic Functions ..
|
||
|
INTRINSIC ABS, MAX, MIN
|
||
|
|
||
|
* ..
|
||
|
* .. Executable Statements ..
|
||
|
*
|
||
|
|
||
|
INFO = 0
|
||
|
NSPLIT = 0
|
||
|
M = 0
|
||
|
*
|
||
|
* Quick return if possible
|
||
|
*
|
||
|
IF( N.LE.0 ) THEN
|
||
|
RETURN
|
||
|
END IF
|
||
|
*
|
||
|
* Decode RANGE
|
||
|
*
|
||
|
IF( LSAME( RANGE, 'A' ) ) THEN
|
||
|
IRANGE = ALLRNG
|
||
|
ELSE IF( LSAME( RANGE, 'V' ) ) THEN
|
||
|
IRANGE = VALRNG
|
||
|
ELSE IF( LSAME( RANGE, 'I' ) ) THEN
|
||
|
IRANGE = INDRNG
|
||
|
END IF
|
||
|
|
||
|
* Get machine constants
|
||
|
SAFMIN = SLAMCH( 'S' )
|
||
|
EPS = SLAMCH( 'P' )
|
||
|
|
||
|
* Set parameters
|
||
|
RTL = HNDRD*EPS
|
||
|
* If one were ever to ask for less initial precision in BSRTOL,
|
||
|
* one should keep in mind that for the subset case, the extremal
|
||
|
* eigenvalues must be at least as accurate as the current setting
|
||
|
* (eigenvalues in the middle need not as much accuracy)
|
||
|
BSRTOL = SQRT(EPS)*(0.5E-3)
|
||
|
|
||
|
* Treat case of 1x1 matrix for quick return
|
||
|
IF( N.EQ.1 ) THEN
|
||
|
IF( (IRANGE.EQ.ALLRNG).OR.
|
||
|
$ ((IRANGE.EQ.VALRNG).AND.(D(1).GT.VL).AND.(D(1).LE.VU)).OR.
|
||
|
$ ((IRANGE.EQ.INDRNG).AND.(IL.EQ.1).AND.(IU.EQ.1)) ) THEN
|
||
|
M = 1
|
||
|
W(1) = D(1)
|
||
|
* The computation error of the eigenvalue is zero
|
||
|
WERR(1) = ZERO
|
||
|
WGAP(1) = ZERO
|
||
|
IBLOCK( 1 ) = 1
|
||
|
INDEXW( 1 ) = 1
|
||
|
GERS(1) = D( 1 )
|
||
|
GERS(2) = D( 1 )
|
||
|
ENDIF
|
||
|
* store the shift for the initial RRR, which is zero in this case
|
||
|
E(1) = ZERO
|
||
|
RETURN
|
||
|
END IF
|
||
|
|
||
|
* General case: tridiagonal matrix of order > 1
|
||
|
*
|
||
|
* Init WERR, WGAP. Compute Gerschgorin intervals and spectral diameter.
|
||
|
* Compute maximum off-diagonal entry and pivmin.
|
||
|
GL = D(1)
|
||
|
GU = D(1)
|
||
|
EOLD = ZERO
|
||
|
EMAX = ZERO
|
||
|
E(N) = ZERO
|
||
|
DO 5 I = 1,N
|
||
|
WERR(I) = ZERO
|
||
|
WGAP(I) = ZERO
|
||
|
EABS = ABS( E(I) )
|
||
|
IF( EABS .GE. EMAX ) THEN
|
||
|
EMAX = EABS
|
||
|
END IF
|
||
|
TMP1 = EABS + EOLD
|
||
|
GERS( 2*I-1) = D(I) - TMP1
|
||
|
GL = MIN( GL, GERS( 2*I - 1))
|
||
|
GERS( 2*I ) = D(I) + TMP1
|
||
|
GU = MAX( GU, GERS(2*I) )
|
||
|
EOLD = EABS
|
||
|
5 CONTINUE
|
||
|
* The minimum pivot allowed in the Sturm sequence for T
|
||
|
PIVMIN = SAFMIN * MAX( ONE, EMAX**2 )
|
||
|
* Compute spectral diameter. The Gerschgorin bounds give an
|
||
|
* estimate that is wrong by at most a factor of SQRT(2)
|
||
|
SPDIAM = GU - GL
|
||
|
|
||
|
* Compute splitting points
|
||
|
CALL SLARRA( N, D, E, E2, SPLTOL, SPDIAM,
|
||
|
$ NSPLIT, ISPLIT, IINFO )
|
||
|
|
||
|
* Can force use of bisection instead of faster DQDS.
|
||
|
* Option left in the code for future multisection work.
|
||
|
FORCEB = .FALSE.
|
||
|
|
||
|
* Initialize USEDQD, DQDS should be used for ALLRNG unless someone
|
||
|
* explicitly wants bisection.
|
||
|
USEDQD = (( IRANGE.EQ.ALLRNG ) .AND. (.NOT.FORCEB))
|
||
|
|
||
|
IF( (IRANGE.EQ.ALLRNG) .AND. (.NOT. FORCEB) ) THEN
|
||
|
* Set interval [VL,VU] that contains all eigenvalues
|
||
|
VL = GL
|
||
|
VU = GU
|
||
|
ELSE
|
||
|
* We call SLARRD to find crude approximations to the eigenvalues
|
||
|
* in the desired range. In case IRANGE = INDRNG, we also obtain the
|
||
|
* interval (VL,VU] that contains all the wanted eigenvalues.
|
||
|
* An interval [LEFT,RIGHT] has converged if
|
||
|
* RIGHT-LEFT.LT.RTOL*MAX(ABS(LEFT),ABS(RIGHT))
|
||
|
* SLARRD needs a WORK of size 4*N, IWORK of size 3*N
|
||
|
CALL SLARRD( RANGE, 'B', N, VL, VU, IL, IU, GERS,
|
||
|
$ BSRTOL, D, E, E2, PIVMIN, NSPLIT, ISPLIT,
|
||
|
$ MM, W, WERR, VL, VU, IBLOCK, INDEXW,
|
||
|
$ WORK, IWORK, IINFO )
|
||
|
IF( IINFO.NE.0 ) THEN
|
||
|
INFO = -1
|
||
|
RETURN
|
||
|
ENDIF
|
||
|
* Make sure that the entries M+1 to N in W, WERR, IBLOCK, INDEXW are 0
|
||
|
DO 14 I = MM+1,N
|
||
|
W( I ) = ZERO
|
||
|
WERR( I ) = ZERO
|
||
|
IBLOCK( I ) = 0
|
||
|
INDEXW( I ) = 0
|
||
|
14 CONTINUE
|
||
|
END IF
|
||
|
|
||
|
|
||
|
***
|
||
|
* Loop over unreduced blocks
|
||
|
IBEGIN = 1
|
||
|
WBEGIN = 1
|
||
|
DO 170 JBLK = 1, NSPLIT
|
||
|
IEND = ISPLIT( JBLK )
|
||
|
IN = IEND - IBEGIN + 1
|
||
|
|
||
|
* 1 X 1 block
|
||
|
IF( IN.EQ.1 ) THEN
|
||
|
IF( (IRANGE.EQ.ALLRNG).OR.( (IRANGE.EQ.VALRNG).AND.
|
||
|
$ ( D( IBEGIN ).GT.VL ).AND.( D( IBEGIN ).LE.VU ) )
|
||
|
$ .OR. ( (IRANGE.EQ.INDRNG).AND.(IBLOCK(WBEGIN).EQ.JBLK))
|
||
|
$ ) THEN
|
||
|
M = M + 1
|
||
|
W( M ) = D( IBEGIN )
|
||
|
WERR(M) = ZERO
|
||
|
* The gap for a single block doesn't matter for the later
|
||
|
* algorithm and is assigned an arbitrary large value
|
||
|
WGAP(M) = ZERO
|
||
|
IBLOCK( M ) = JBLK
|
||
|
INDEXW( M ) = 1
|
||
|
WBEGIN = WBEGIN + 1
|
||
|
ENDIF
|
||
|
* E( IEND ) holds the shift for the initial RRR
|
||
|
E( IEND ) = ZERO
|
||
|
IBEGIN = IEND + 1
|
||
|
GO TO 170
|
||
|
END IF
|
||
|
*
|
||
|
* Blocks of size larger than 1x1
|
||
|
*
|
||
|
* E( IEND ) will hold the shift for the initial RRR, for now set it =0
|
||
|
E( IEND ) = ZERO
|
||
|
*
|
||
|
* Find local outer bounds GL,GU for the block
|
||
|
GL = D(IBEGIN)
|
||
|
GU = D(IBEGIN)
|
||
|
DO 15 I = IBEGIN , IEND
|
||
|
GL = MIN( GERS( 2*I-1 ), GL )
|
||
|
GU = MAX( GERS( 2*I ), GU )
|
||
|
15 CONTINUE
|
||
|
SPDIAM = GU - GL
|
||
|
|
||
|
IF(.NOT. ((IRANGE.EQ.ALLRNG).AND.(.NOT.FORCEB)) ) THEN
|
||
|
* Count the number of eigenvalues in the current block.
|
||
|
MB = 0
|
||
|
DO 20 I = WBEGIN,MM
|
||
|
IF( IBLOCK(I).EQ.JBLK ) THEN
|
||
|
MB = MB+1
|
||
|
ELSE
|
||
|
GOTO 21
|
||
|
ENDIF
|
||
|
20 CONTINUE
|
||
|
21 CONTINUE
|
||
|
|
||
|
IF( MB.EQ.0) THEN
|
||
|
* No eigenvalue in the current block lies in the desired range
|
||
|
* E( IEND ) holds the shift for the initial RRR
|
||
|
E( IEND ) = ZERO
|
||
|
IBEGIN = IEND + 1
|
||
|
GO TO 170
|
||
|
ELSE
|
||
|
|
||
|
* Decide whether dqds or bisection is more efficient
|
||
|
USEDQD = ( (MB .GT. FAC*IN) .AND. (.NOT.FORCEB) )
|
||
|
WEND = WBEGIN + MB - 1
|
||
|
* Calculate gaps for the current block
|
||
|
* In later stages, when representations for individual
|
||
|
* eigenvalues are different, we use SIGMA = E( IEND ).
|
||
|
SIGMA = ZERO
|
||
|
DO 30 I = WBEGIN, WEND - 1
|
||
|
WGAP( I ) = MAX( ZERO,
|
||
|
$ W(I+1)-WERR(I+1) - (W(I)+WERR(I)) )
|
||
|
30 CONTINUE
|
||
|
WGAP( WEND ) = MAX( ZERO,
|
||
|
$ VU - SIGMA - (W( WEND )+WERR( WEND )))
|
||
|
* Find local index of the first and last desired evalue.
|
||
|
INDL = INDEXW(WBEGIN)
|
||
|
INDU = INDEXW( WEND )
|
||
|
ENDIF
|
||
|
ENDIF
|
||
|
IF(( (IRANGE.EQ.ALLRNG) .AND. (.NOT. FORCEB) ).OR.USEDQD) THEN
|
||
|
* Case of DQDS
|
||
|
* Find approximations to the extremal eigenvalues of the block
|
||
|
CALL SLARRK( IN, 1, GL, GU, D(IBEGIN),
|
||
|
$ E2(IBEGIN), PIVMIN, RTL, TMP, TMP1, IINFO )
|
||
|
IF( IINFO.NE.0 ) THEN
|
||
|
INFO = -1
|
||
|
RETURN
|
||
|
ENDIF
|
||
|
ISLEFT = MAX(GL, TMP - TMP1
|
||
|
$ - HNDRD * EPS* ABS(TMP - TMP1))
|
||
|
|
||
|
CALL SLARRK( IN, IN, GL, GU, D(IBEGIN),
|
||
|
$ E2(IBEGIN), PIVMIN, RTL, TMP, TMP1, IINFO )
|
||
|
IF( IINFO.NE.0 ) THEN
|
||
|
INFO = -1
|
||
|
RETURN
|
||
|
ENDIF
|
||
|
ISRGHT = MIN(GU, TMP + TMP1
|
||
|
$ + HNDRD * EPS * ABS(TMP + TMP1))
|
||
|
* Improve the estimate of the spectral diameter
|
||
|
SPDIAM = ISRGHT - ISLEFT
|
||
|
ELSE
|
||
|
* Case of bisection
|
||
|
* Find approximations to the wanted extremal eigenvalues
|
||
|
ISLEFT = MAX(GL, W(WBEGIN) - WERR(WBEGIN)
|
||
|
$ - HNDRD * EPS*ABS(W(WBEGIN)- WERR(WBEGIN) ))
|
||
|
ISRGHT = MIN(GU,W(WEND) + WERR(WEND)
|
||
|
$ + HNDRD * EPS * ABS(W(WEND)+ WERR(WEND)))
|
||
|
ENDIF
|
||
|
|
||
|
|
||
|
* Decide whether the base representation for the current block
|
||
|
* L_JBLK D_JBLK L_JBLK^T = T_JBLK - sigma_JBLK I
|
||
|
* should be on the left or the right end of the current block.
|
||
|
* The strategy is to shift to the end which is "more populated"
|
||
|
* Furthermore, decide whether to use DQDS for the computation of
|
||
|
* the eigenvalue approximations at the end of SLARRE or bisection.
|
||
|
* dqds is chosen if all eigenvalues are desired or the number of
|
||
|
* eigenvalues to be computed is large compared to the blocksize.
|
||
|
IF( ( IRANGE.EQ.ALLRNG ) .AND. (.NOT.FORCEB) ) THEN
|
||
|
* If all the eigenvalues have to be computed, we use dqd
|
||
|
USEDQD = .TRUE.
|
||
|
* INDL is the local index of the first eigenvalue to compute
|
||
|
INDL = 1
|
||
|
INDU = IN
|
||
|
* MB = number of eigenvalues to compute
|
||
|
MB = IN
|
||
|
WEND = WBEGIN + MB - 1
|
||
|
* Define 1/4 and 3/4 points of the spectrum
|
||
|
S1 = ISLEFT + FOURTH * SPDIAM
|
||
|
S2 = ISRGHT - FOURTH * SPDIAM
|
||
|
ELSE
|
||
|
* SLARRD has computed IBLOCK and INDEXW for each eigenvalue
|
||
|
* approximation.
|
||
|
* choose sigma
|
||
|
IF( USEDQD ) THEN
|
||
|
S1 = ISLEFT + FOURTH * SPDIAM
|
||
|
S2 = ISRGHT - FOURTH * SPDIAM
|
||
|
ELSE
|
||
|
TMP = MIN(ISRGHT,VU) - MAX(ISLEFT,VL)
|
||
|
S1 = MAX(ISLEFT,VL) + FOURTH * TMP
|
||
|
S2 = MIN(ISRGHT,VU) - FOURTH * TMP
|
||
|
ENDIF
|
||
|
ENDIF
|
||
|
|
||
|
* Compute the negcount at the 1/4 and 3/4 points
|
||
|
IF(MB.GT.1) THEN
|
||
|
CALL SLARRC( 'T', IN, S1, S2, D(IBEGIN),
|
||
|
$ E(IBEGIN), PIVMIN, CNT, CNT1, CNT2, IINFO)
|
||
|
ENDIF
|
||
|
|
||
|
IF(MB.EQ.1) THEN
|
||
|
SIGMA = GL
|
||
|
SGNDEF = ONE
|
||
|
ELSEIF( CNT1 - INDL .GE. INDU - CNT2 ) THEN
|
||
|
IF( ( IRANGE.EQ.ALLRNG ) .AND. (.NOT.FORCEB) ) THEN
|
||
|
SIGMA = MAX(ISLEFT,GL)
|
||
|
ELSEIF( USEDQD ) THEN
|
||
|
* use Gerschgorin bound as shift to get pos def matrix
|
||
|
* for dqds
|
||
|
SIGMA = ISLEFT
|
||
|
ELSE
|
||
|
* use approximation of the first desired eigenvalue of the
|
||
|
* block as shift
|
||
|
SIGMA = MAX(ISLEFT,VL)
|
||
|
ENDIF
|
||
|
SGNDEF = ONE
|
||
|
ELSE
|
||
|
IF( ( IRANGE.EQ.ALLRNG ) .AND. (.NOT.FORCEB) ) THEN
|
||
|
SIGMA = MIN(ISRGHT,GU)
|
||
|
ELSEIF( USEDQD ) THEN
|
||
|
* use Gerschgorin bound as shift to get neg def matrix
|
||
|
* for dqds
|
||
|
SIGMA = ISRGHT
|
||
|
ELSE
|
||
|
* use approximation of the first desired eigenvalue of the
|
||
|
* block as shift
|
||
|
SIGMA = MIN(ISRGHT,VU)
|
||
|
ENDIF
|
||
|
SGNDEF = -ONE
|
||
|
ENDIF
|
||
|
|
||
|
|
||
|
* An initial SIGMA has been chosen that will be used for computing
|
||
|
* T - SIGMA I = L D L^T
|
||
|
* Define the increment TAU of the shift in case the initial shift
|
||
|
* needs to be refined to obtain a factorization with not too much
|
||
|
* element growth.
|
||
|
IF( USEDQD ) THEN
|
||
|
* The initial SIGMA was to the outer end of the spectrum
|
||
|
* the matrix is definite and we need not retreat.
|
||
|
TAU = SPDIAM*EPS*N + TWO*PIVMIN
|
||
|
TAU = MAX( TAU,TWO*EPS*ABS(SIGMA) )
|
||
|
ELSE
|
||
|
IF(MB.GT.1) THEN
|
||
|
CLWDTH = W(WEND) + WERR(WEND) - W(WBEGIN) - WERR(WBEGIN)
|
||
|
AVGAP = ABS(CLWDTH / REAL(WEND-WBEGIN))
|
||
|
IF( SGNDEF.EQ.ONE ) THEN
|
||
|
TAU = HALF*MAX(WGAP(WBEGIN),AVGAP)
|
||
|
TAU = MAX(TAU,WERR(WBEGIN))
|
||
|
ELSE
|
||
|
TAU = HALF*MAX(WGAP(WEND-1),AVGAP)
|
||
|
TAU = MAX(TAU,WERR(WEND))
|
||
|
ENDIF
|
||
|
ELSE
|
||
|
TAU = WERR(WBEGIN)
|
||
|
ENDIF
|
||
|
ENDIF
|
||
|
*
|
||
|
DO 80 IDUM = 1, MAXTRY
|
||
|
* Compute L D L^T factorization of tridiagonal matrix T - sigma I.
|
||
|
* Store D in WORK(1:IN), L in WORK(IN+1:2*IN), and reciprocals of
|
||
|
* pivots in WORK(2*IN+1:3*IN)
|
||
|
DPIVOT = D( IBEGIN ) - SIGMA
|
||
|
WORK( 1 ) = DPIVOT
|
||
|
DMAX = ABS( WORK(1) )
|
||
|
J = IBEGIN
|
||
|
DO 70 I = 1, IN - 1
|
||
|
WORK( 2*IN+I ) = ONE / WORK( I )
|
||
|
TMP = E( J )*WORK( 2*IN+I )
|
||
|
WORK( IN+I ) = TMP
|
||
|
DPIVOT = ( D( J+1 )-SIGMA ) - TMP*E( J )
|
||
|
WORK( I+1 ) = DPIVOT
|
||
|
DMAX = MAX( DMAX, ABS(DPIVOT) )
|
||
|
J = J + 1
|
||
|
70 CONTINUE
|
||
|
* check for element growth
|
||
|
IF( DMAX .GT. MAXGROWTH*SPDIAM ) THEN
|
||
|
NOREP = .TRUE.
|
||
|
ELSE
|
||
|
NOREP = .FALSE.
|
||
|
ENDIF
|
||
|
IF( USEDQD .AND. .NOT.NOREP ) THEN
|
||
|
* Ensure the definiteness of the representation
|
||
|
* All entries of D (of L D L^T) must have the same sign
|
||
|
DO 71 I = 1, IN
|
||
|
TMP = SGNDEF*WORK( I )
|
||
|
IF( TMP.LT.ZERO ) NOREP = .TRUE.
|
||
|
71 CONTINUE
|
||
|
ENDIF
|
||
|
IF(NOREP) THEN
|
||
|
* Note that in the case of IRANGE=ALLRNG, we use the Gerschgorin
|
||
|
* shift which makes the matrix definite. So we should end up
|
||
|
* here really only in the case of IRANGE = VALRNG or INDRNG.
|
||
|
IF( IDUM.EQ.MAXTRY-1 ) THEN
|
||
|
IF( SGNDEF.EQ.ONE ) THEN
|
||
|
* The fudged Gerschgorin shift should succeed
|
||
|
SIGMA =
|
||
|
$ GL - FUDGE*SPDIAM*EPS*N - FUDGE*TWO*PIVMIN
|
||
|
ELSE
|
||
|
SIGMA =
|
||
|
$ GU + FUDGE*SPDIAM*EPS*N + FUDGE*TWO*PIVMIN
|
||
|
END IF
|
||
|
ELSE
|
||
|
SIGMA = SIGMA - SGNDEF * TAU
|
||
|
TAU = TWO * TAU
|
||
|
END IF
|
||
|
ELSE
|
||
|
* an initial RRR is found
|
||
|
GO TO 83
|
||
|
END IF
|
||
|
80 CONTINUE
|
||
|
* if the program reaches this point, no base representation could be
|
||
|
* found in MAXTRY iterations.
|
||
|
INFO = 2
|
||
|
RETURN
|
||
|
|
||
|
83 CONTINUE
|
||
|
* At this point, we have found an initial base representation
|
||
|
* T - SIGMA I = L D L^T with not too much element growth.
|
||
|
* Store the shift.
|
||
|
E( IEND ) = SIGMA
|
||
|
* Store D and L.
|
||
|
CALL SCOPY( IN, WORK, 1, D( IBEGIN ), 1 )
|
||
|
CALL SCOPY( IN-1, WORK( IN+1 ), 1, E( IBEGIN ), 1 )
|
||
|
|
||
|
|
||
|
IF(MB.GT.1 ) THEN
|
||
|
*
|
||
|
* Perturb each entry of the base representation by a small
|
||
|
* (but random) relative amount to overcome difficulties with
|
||
|
* glued matrices.
|
||
|
*
|
||
|
DO 122 I = 1, 4
|
||
|
ISEED( I ) = 1
|
||
|
122 CONTINUE
|
||
|
|
||
|
CALL SLARNV(2, ISEED, 2*IN-1, WORK(1))
|
||
|
DO 125 I = 1,IN-1
|
||
|
D(IBEGIN+I-1) = D(IBEGIN+I-1)*(ONE+EPS*PERT*WORK(I))
|
||
|
E(IBEGIN+I-1) = E(IBEGIN+I-1)*(ONE+EPS*PERT*WORK(IN+I))
|
||
|
125 CONTINUE
|
||
|
D(IEND) = D(IEND)*(ONE+EPS*FOUR*WORK(IN))
|
||
|
*
|
||
|
ENDIF
|
||
|
*
|
||
|
* Don't update the Gerschgorin intervals because keeping track
|
||
|
* of the updates would be too much work in SLARRV.
|
||
|
* We update W instead and use it to locate the proper Gerschgorin
|
||
|
* intervals.
|
||
|
|
||
|
* Compute the required eigenvalues of L D L' by bisection or dqds
|
||
|
IF ( .NOT.USEDQD ) THEN
|
||
|
* If SLARRD has been used, shift the eigenvalue approximations
|
||
|
* according to their representation. This is necessary for
|
||
|
* a uniform SLARRV since dqds computes eigenvalues of the
|
||
|
* shifted representation. In SLARRV, W will always hold the
|
||
|
* UNshifted eigenvalue approximation.
|
||
|
DO 134 J=WBEGIN,WEND
|
||
|
W(J) = W(J) - SIGMA
|
||
|
WERR(J) = WERR(J) + ABS(W(J)) * EPS
|
||
|
134 CONTINUE
|
||
|
* call SLARRB to reduce eigenvalue error of the approximations
|
||
|
* from SLARRD
|
||
|
DO 135 I = IBEGIN, IEND-1
|
||
|
WORK( I ) = D( I ) * E( I )**2
|
||
|
135 CONTINUE
|
||
|
* use bisection to find EV from INDL to INDU
|
||
|
CALL SLARRB(IN, D(IBEGIN), WORK(IBEGIN),
|
||
|
$ INDL, INDU, RTOL1, RTOL2, INDL-1,
|
||
|
$ W(WBEGIN), WGAP(WBEGIN), WERR(WBEGIN),
|
||
|
$ WORK( 2*N+1 ), IWORK, PIVMIN, SPDIAM,
|
||
|
$ IN, IINFO )
|
||
|
IF( IINFO .NE. 0 ) THEN
|
||
|
INFO = -4
|
||
|
RETURN
|
||
|
END IF
|
||
|
* SLARRB computes all gaps correctly except for the last one
|
||
|
* Record distance to VU/GU
|
||
|
WGAP( WEND ) = MAX( ZERO,
|
||
|
$ ( VU-SIGMA ) - ( W( WEND ) + WERR( WEND ) ) )
|
||
|
DO 138 I = INDL, INDU
|
||
|
M = M + 1
|
||
|
IBLOCK(M) = JBLK
|
||
|
INDEXW(M) = I
|
||
|
138 CONTINUE
|
||
|
ELSE
|
||
|
* Call dqds to get all eigs (and then possibly delete unwanted
|
||
|
* eigenvalues).
|
||
|
* Note that dqds finds the eigenvalues of the L D L^T representation
|
||
|
* of T to high relative accuracy. High relative accuracy
|
||
|
* might be lost when the shift of the RRR is subtracted to obtain
|
||
|
* the eigenvalues of T. However, T is not guaranteed to define its
|
||
|
* eigenvalues to high relative accuracy anyway.
|
||
|
* Set RTOL to the order of the tolerance used in SLASQ2
|
||
|
* This is an ESTIMATED error, the worst case bound is 4*N*EPS
|
||
|
* which is usually too large and requires unnecessary work to be
|
||
|
* done by bisection when computing the eigenvectors
|
||
|
RTOL = LOG(REAL(IN)) * FOUR * EPS
|
||
|
J = IBEGIN
|
||
|
DO 140 I = 1, IN - 1
|
||
|
WORK( 2*I-1 ) = ABS( D( J ) )
|
||
|
WORK( 2*I ) = E( J )*E( J )*WORK( 2*I-1 )
|
||
|
J = J + 1
|
||
|
140 CONTINUE
|
||
|
WORK( 2*IN-1 ) = ABS( D( IEND ) )
|
||
|
WORK( 2*IN ) = ZERO
|
||
|
CALL SLASQ2( IN, WORK, IINFO )
|
||
|
IF( IINFO .NE. 0 ) THEN
|
||
|
* If IINFO = -5 then an index is part of a tight cluster
|
||
|
* and should be changed. The index is in IWORK(1) and the
|
||
|
* gap is in WORK(N+1)
|
||
|
INFO = -5
|
||
|
RETURN
|
||
|
ELSE
|
||
|
* Test that all eigenvalues are positive as expected
|
||
|
DO 149 I = 1, IN
|
||
|
IF( WORK( I ).LT.ZERO ) THEN
|
||
|
INFO = -6
|
||
|
RETURN
|
||
|
ENDIF
|
||
|
149 CONTINUE
|
||
|
END IF
|
||
|
IF( SGNDEF.GT.ZERO ) THEN
|
||
|
DO 150 I = INDL, INDU
|
||
|
M = M + 1
|
||
|
W( M ) = WORK( IN-I+1 )
|
||
|
IBLOCK( M ) = JBLK
|
||
|
INDEXW( M ) = I
|
||
|
150 CONTINUE
|
||
|
ELSE
|
||
|
DO 160 I = INDL, INDU
|
||
|
M = M + 1
|
||
|
W( M ) = -WORK( I )
|
||
|
IBLOCK( M ) = JBLK
|
||
|
INDEXW( M ) = I
|
||
|
160 CONTINUE
|
||
|
END IF
|
||
|
|
||
|
DO 165 I = M - MB + 1, M
|
||
|
* the value of RTOL below should be the tolerance in SLASQ2
|
||
|
WERR( I ) = RTOL * ABS( W(I) )
|
||
|
165 CONTINUE
|
||
|
DO 166 I = M - MB + 1, M - 1
|
||
|
* compute the right gap between the intervals
|
||
|
WGAP( I ) = MAX( ZERO,
|
||
|
$ W(I+1)-WERR(I+1) - (W(I)+WERR(I)) )
|
||
|
166 CONTINUE
|
||
|
WGAP( M ) = MAX( ZERO,
|
||
|
$ ( VU-SIGMA ) - ( W( M ) + WERR( M ) ) )
|
||
|
END IF
|
||
|
* proceed with next block
|
||
|
IBEGIN = IEND + 1
|
||
|
WBEGIN = WEND + 1
|
||
|
170 CONTINUE
|
||
|
*
|
||
|
|
||
|
RETURN
|
||
|
*
|
||
|
* End of SLARRE
|
||
|
*
|
||
|
END
|