You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
439 lines
13 KiB
439 lines
13 KiB
2 years ago
|
*> \brief \b SLASD3 finds all square roots of the roots of the secular equation, as defined by the values in D and Z, and then updates the singular vectors by matrix multiplication. Used by sbdsdc.
|
||
|
*
|
||
|
* =========== DOCUMENTATION ===========
|
||
|
*
|
||
|
* Online html documentation available at
|
||
|
* http://www.netlib.org/lapack/explore-html/
|
||
|
*
|
||
|
*> \htmlonly
|
||
|
*> Download SLASD3 + dependencies
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slasd3.f">
|
||
|
*> [TGZ]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slasd3.f">
|
||
|
*> [ZIP]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slasd3.f">
|
||
|
*> [TXT]</a>
|
||
|
*> \endhtmlonly
|
||
|
*
|
||
|
* Definition:
|
||
|
* ===========
|
||
|
*
|
||
|
* SUBROUTINE SLASD3( NL, NR, SQRE, K, D, Q, LDQ, DSIGMA, U, LDU, U2,
|
||
|
* LDU2, VT, LDVT, VT2, LDVT2, IDXC, CTOT, Z,
|
||
|
* INFO )
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
* INTEGER INFO, K, LDQ, LDU, LDU2, LDVT, LDVT2, NL, NR,
|
||
|
* $ SQRE
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
* INTEGER CTOT( * ), IDXC( * )
|
||
|
* REAL D( * ), DSIGMA( * ), Q( LDQ, * ), U( LDU, * ),
|
||
|
* $ U2( LDU2, * ), VT( LDVT, * ), VT2( LDVT2, * ),
|
||
|
* $ Z( * )
|
||
|
* ..
|
||
|
*
|
||
|
*
|
||
|
*> \par Purpose:
|
||
|
* =============
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*> SLASD3 finds all the square roots of the roots of the secular
|
||
|
*> equation, as defined by the values in D and Z. It makes the
|
||
|
*> appropriate calls to SLASD4 and then updates the singular
|
||
|
*> vectors by matrix multiplication.
|
||
|
*>
|
||
|
*> SLASD3 is called from SLASD1.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Arguments:
|
||
|
* ==========
|
||
|
*
|
||
|
*> \param[in] NL
|
||
|
*> \verbatim
|
||
|
*> NL is INTEGER
|
||
|
*> The row dimension of the upper block. NL >= 1.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] NR
|
||
|
*> \verbatim
|
||
|
*> NR is INTEGER
|
||
|
*> The row dimension of the lower block. NR >= 1.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] SQRE
|
||
|
*> \verbatim
|
||
|
*> SQRE is INTEGER
|
||
|
*> = 0: the lower block is an NR-by-NR square matrix.
|
||
|
*> = 1: the lower block is an NR-by-(NR+1) rectangular matrix.
|
||
|
*>
|
||
|
*> The bidiagonal matrix has N = NL + NR + 1 rows and
|
||
|
*> M = N + SQRE >= N columns.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] K
|
||
|
*> \verbatim
|
||
|
*> K is INTEGER
|
||
|
*> The size of the secular equation, 1 =< K = < N.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] D
|
||
|
*> \verbatim
|
||
|
*> D is REAL array, dimension(K)
|
||
|
*> On exit the square roots of the roots of the secular equation,
|
||
|
*> in ascending order.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] Q
|
||
|
*> \verbatim
|
||
|
*> Q is REAL array, dimension (LDQ,K)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDQ
|
||
|
*> \verbatim
|
||
|
*> LDQ is INTEGER
|
||
|
*> The leading dimension of the array Q. LDQ >= K.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] DSIGMA
|
||
|
*> \verbatim
|
||
|
*> DSIGMA is REAL array, dimension(K)
|
||
|
*> The first K elements of this array contain the old roots
|
||
|
*> of the deflated updating problem. These are the poles
|
||
|
*> of the secular equation.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] U
|
||
|
*> \verbatim
|
||
|
*> U is REAL array, dimension (LDU, N)
|
||
|
*> The last N - K columns of this matrix contain the deflated
|
||
|
*> left singular vectors.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDU
|
||
|
*> \verbatim
|
||
|
*> LDU is INTEGER
|
||
|
*> The leading dimension of the array U. LDU >= N.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] U2
|
||
|
*> \verbatim
|
||
|
*> U2 is REAL array, dimension (LDU2, N)
|
||
|
*> The first K columns of this matrix contain the non-deflated
|
||
|
*> left singular vectors for the split problem.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDU2
|
||
|
*> \verbatim
|
||
|
*> LDU2 is INTEGER
|
||
|
*> The leading dimension of the array U2. LDU2 >= N.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] VT
|
||
|
*> \verbatim
|
||
|
*> VT is REAL array, dimension (LDVT, M)
|
||
|
*> The last M - K columns of VT**T contain the deflated
|
||
|
*> right singular vectors.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDVT
|
||
|
*> \verbatim
|
||
|
*> LDVT is INTEGER
|
||
|
*> The leading dimension of the array VT. LDVT >= N.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] VT2
|
||
|
*> \verbatim
|
||
|
*> VT2 is REAL array, dimension (LDVT2, N)
|
||
|
*> The first K columns of VT2**T contain the non-deflated
|
||
|
*> right singular vectors for the split problem.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDVT2
|
||
|
*> \verbatim
|
||
|
*> LDVT2 is INTEGER
|
||
|
*> The leading dimension of the array VT2. LDVT2 >= N.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] IDXC
|
||
|
*> \verbatim
|
||
|
*> IDXC is INTEGER array, dimension (N)
|
||
|
*> The permutation used to arrange the columns of U (and rows of
|
||
|
*> VT) into three groups: the first group contains non-zero
|
||
|
*> entries only at and above (or before) NL +1; the second
|
||
|
*> contains non-zero entries only at and below (or after) NL+2;
|
||
|
*> and the third is dense. The first column of U and the row of
|
||
|
*> VT are treated separately, however.
|
||
|
*>
|
||
|
*> The rows of the singular vectors found by SLASD4
|
||
|
*> must be likewise permuted before the matrix multiplies can
|
||
|
*> take place.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] CTOT
|
||
|
*> \verbatim
|
||
|
*> CTOT is INTEGER array, dimension (4)
|
||
|
*> A count of the total number of the various types of columns
|
||
|
*> in U (or rows in VT), as described in IDXC. The fourth column
|
||
|
*> type is any column which has been deflated.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] Z
|
||
|
*> \verbatim
|
||
|
*> Z is REAL array, dimension (K)
|
||
|
*> The first K elements of this array contain the components
|
||
|
*> of the deflation-adjusted updating row vector.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] INFO
|
||
|
*> \verbatim
|
||
|
*> INFO is INTEGER
|
||
|
*> = 0: successful exit.
|
||
|
*> < 0: if INFO = -i, the i-th argument had an illegal value.
|
||
|
*> > 0: if INFO = 1, a singular value did not converge
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Authors:
|
||
|
* ========
|
||
|
*
|
||
|
*> \author Univ. of Tennessee
|
||
|
*> \author Univ. of California Berkeley
|
||
|
*> \author Univ. of Colorado Denver
|
||
|
*> \author NAG Ltd.
|
||
|
*
|
||
|
*> \ingroup OTHERauxiliary
|
||
|
*
|
||
|
*> \par Contributors:
|
||
|
* ==================
|
||
|
*>
|
||
|
*> Ming Gu and Huan Ren, Computer Science Division, University of
|
||
|
*> California at Berkeley, USA
|
||
|
*>
|
||
|
* =====================================================================
|
||
|
SUBROUTINE SLASD3( NL, NR, SQRE, K, D, Q, LDQ, DSIGMA, U, LDU, U2,
|
||
|
$ LDU2, VT, LDVT, VT2, LDVT2, IDXC, CTOT, Z,
|
||
|
$ INFO )
|
||
|
*
|
||
|
* -- LAPACK auxiliary routine --
|
||
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
INTEGER INFO, K, LDQ, LDU, LDU2, LDVT, LDVT2, NL, NR,
|
||
|
$ SQRE
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
INTEGER CTOT( * ), IDXC( * )
|
||
|
REAL D( * ), DSIGMA( * ), Q( LDQ, * ), U( LDU, * ),
|
||
|
$ U2( LDU2, * ), VT( LDVT, * ), VT2( LDVT2, * ),
|
||
|
$ Z( * )
|
||
|
* ..
|
||
|
*
|
||
|
* =====================================================================
|
||
|
*
|
||
|
* .. Parameters ..
|
||
|
REAL ONE, ZERO, NEGONE
|
||
|
PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0,
|
||
|
$ NEGONE = -1.0E+0 )
|
||
|
* ..
|
||
|
* .. Local Scalars ..
|
||
|
INTEGER CTEMP, I, J, JC, KTEMP, M, N, NLP1, NLP2, NRP1
|
||
|
REAL RHO, TEMP
|
||
|
* ..
|
||
|
* .. External Functions ..
|
||
|
REAL SNRM2
|
||
|
EXTERNAL SNRM2
|
||
|
* ..
|
||
|
* .. External Subroutines ..
|
||
|
EXTERNAL SCOPY, SGEMM, SLACPY, SLASCL, SLASD4, XERBLA
|
||
|
* ..
|
||
|
* .. Intrinsic Functions ..
|
||
|
INTRINSIC ABS, SIGN, SQRT
|
||
|
* ..
|
||
|
* .. Executable Statements ..
|
||
|
*
|
||
|
* Test the input parameters.
|
||
|
*
|
||
|
INFO = 0
|
||
|
*
|
||
|
IF( NL.LT.1 ) THEN
|
||
|
INFO = -1
|
||
|
ELSE IF( NR.LT.1 ) THEN
|
||
|
INFO = -2
|
||
|
ELSE IF( ( SQRE.NE.1 ) .AND. ( SQRE.NE.0 ) ) THEN
|
||
|
INFO = -3
|
||
|
END IF
|
||
|
*
|
||
|
N = NL + NR + 1
|
||
|
M = N + SQRE
|
||
|
NLP1 = NL + 1
|
||
|
NLP2 = NL + 2
|
||
|
*
|
||
|
IF( ( K.LT.1 ) .OR. ( K.GT.N ) ) THEN
|
||
|
INFO = -4
|
||
|
ELSE IF( LDQ.LT.K ) THEN
|
||
|
INFO = -7
|
||
|
ELSE IF( LDU.LT.N ) THEN
|
||
|
INFO = -10
|
||
|
ELSE IF( LDU2.LT.N ) THEN
|
||
|
INFO = -12
|
||
|
ELSE IF( LDVT.LT.M ) THEN
|
||
|
INFO = -14
|
||
|
ELSE IF( LDVT2.LT.M ) THEN
|
||
|
INFO = -16
|
||
|
END IF
|
||
|
IF( INFO.NE.0 ) THEN
|
||
|
CALL XERBLA( 'SLASD3', -INFO )
|
||
|
RETURN
|
||
|
END IF
|
||
|
*
|
||
|
* Quick return if possible
|
||
|
*
|
||
|
IF( K.EQ.1 ) THEN
|
||
|
D( 1 ) = ABS( Z( 1 ) )
|
||
|
CALL SCOPY( M, VT2( 1, 1 ), LDVT2, VT( 1, 1 ), LDVT )
|
||
|
IF( Z( 1 ).GT.ZERO ) THEN
|
||
|
CALL SCOPY( N, U2( 1, 1 ), 1, U( 1, 1 ), 1 )
|
||
|
ELSE
|
||
|
DO 10 I = 1, N
|
||
|
U( I, 1 ) = -U2( I, 1 )
|
||
|
10 CONTINUE
|
||
|
END IF
|
||
|
RETURN
|
||
|
END IF
|
||
|
*
|
||
|
* Keep a copy of Z.
|
||
|
*
|
||
|
CALL SCOPY( K, Z, 1, Q, 1 )
|
||
|
*
|
||
|
* Normalize Z.
|
||
|
*
|
||
|
RHO = SNRM2( K, Z, 1 )
|
||
|
CALL SLASCL( 'G', 0, 0, RHO, ONE, K, 1, Z, K, INFO )
|
||
|
RHO = RHO*RHO
|
||
|
*
|
||
|
* Find the new singular values.
|
||
|
*
|
||
|
DO 30 J = 1, K
|
||
|
CALL SLASD4( K, J, DSIGMA, Z, U( 1, J ), RHO, D( J ),
|
||
|
$ VT( 1, J ), INFO )
|
||
|
*
|
||
|
* If the zero finder fails, report the convergence failure.
|
||
|
*
|
||
|
IF( INFO.NE.0 ) THEN
|
||
|
RETURN
|
||
|
END IF
|
||
|
30 CONTINUE
|
||
|
*
|
||
|
* Compute updated Z.
|
||
|
*
|
||
|
DO 60 I = 1, K
|
||
|
Z( I ) = U( I, K )*VT( I, K )
|
||
|
DO 40 J = 1, I - 1
|
||
|
Z( I ) = Z( I )*( U( I, J )*VT( I, J ) /
|
||
|
$ ( DSIGMA( I )-DSIGMA( J ) ) /
|
||
|
$ ( DSIGMA( I )+DSIGMA( J ) ) )
|
||
|
40 CONTINUE
|
||
|
DO 50 J = I, K - 1
|
||
|
Z( I ) = Z( I )*( U( I, J )*VT( I, J ) /
|
||
|
$ ( DSIGMA( I )-DSIGMA( J+1 ) ) /
|
||
|
$ ( DSIGMA( I )+DSIGMA( J+1 ) ) )
|
||
|
50 CONTINUE
|
||
|
Z( I ) = SIGN( SQRT( ABS( Z( I ) ) ), Q( I, 1 ) )
|
||
|
60 CONTINUE
|
||
|
*
|
||
|
* Compute left singular vectors of the modified diagonal matrix,
|
||
|
* and store related information for the right singular vectors.
|
||
|
*
|
||
|
DO 90 I = 1, K
|
||
|
VT( 1, I ) = Z( 1 ) / U( 1, I ) / VT( 1, I )
|
||
|
U( 1, I ) = NEGONE
|
||
|
DO 70 J = 2, K
|
||
|
VT( J, I ) = Z( J ) / U( J, I ) / VT( J, I )
|
||
|
U( J, I ) = DSIGMA( J )*VT( J, I )
|
||
|
70 CONTINUE
|
||
|
TEMP = SNRM2( K, U( 1, I ), 1 )
|
||
|
Q( 1, I ) = U( 1, I ) / TEMP
|
||
|
DO 80 J = 2, K
|
||
|
JC = IDXC( J )
|
||
|
Q( J, I ) = U( JC, I ) / TEMP
|
||
|
80 CONTINUE
|
||
|
90 CONTINUE
|
||
|
*
|
||
|
* Update the left singular vector matrix.
|
||
|
*
|
||
|
IF( K.EQ.2 ) THEN
|
||
|
CALL SGEMM( 'N', 'N', N, K, K, ONE, U2, LDU2, Q, LDQ, ZERO, U,
|
||
|
$ LDU )
|
||
|
GO TO 100
|
||
|
END IF
|
||
|
IF( CTOT( 1 ).GT.0 ) THEN
|
||
|
CALL SGEMM( 'N', 'N', NL, K, CTOT( 1 ), ONE, U2( 1, 2 ), LDU2,
|
||
|
$ Q( 2, 1 ), LDQ, ZERO, U( 1, 1 ), LDU )
|
||
|
IF( CTOT( 3 ).GT.0 ) THEN
|
||
|
KTEMP = 2 + CTOT( 1 ) + CTOT( 2 )
|
||
|
CALL SGEMM( 'N', 'N', NL, K, CTOT( 3 ), ONE, U2( 1, KTEMP ),
|
||
|
$ LDU2, Q( KTEMP, 1 ), LDQ, ONE, U( 1, 1 ), LDU )
|
||
|
END IF
|
||
|
ELSE IF( CTOT( 3 ).GT.0 ) THEN
|
||
|
KTEMP = 2 + CTOT( 1 ) + CTOT( 2 )
|
||
|
CALL SGEMM( 'N', 'N', NL, K, CTOT( 3 ), ONE, U2( 1, KTEMP ),
|
||
|
$ LDU2, Q( KTEMP, 1 ), LDQ, ZERO, U( 1, 1 ), LDU )
|
||
|
ELSE
|
||
|
CALL SLACPY( 'F', NL, K, U2, LDU2, U, LDU )
|
||
|
END IF
|
||
|
CALL SCOPY( K, Q( 1, 1 ), LDQ, U( NLP1, 1 ), LDU )
|
||
|
KTEMP = 2 + CTOT( 1 )
|
||
|
CTEMP = CTOT( 2 ) + CTOT( 3 )
|
||
|
CALL SGEMM( 'N', 'N', NR, K, CTEMP, ONE, U2( NLP2, KTEMP ), LDU2,
|
||
|
$ Q( KTEMP, 1 ), LDQ, ZERO, U( NLP2, 1 ), LDU )
|
||
|
*
|
||
|
* Generate the right singular vectors.
|
||
|
*
|
||
|
100 CONTINUE
|
||
|
DO 120 I = 1, K
|
||
|
TEMP = SNRM2( K, VT( 1, I ), 1 )
|
||
|
Q( I, 1 ) = VT( 1, I ) / TEMP
|
||
|
DO 110 J = 2, K
|
||
|
JC = IDXC( J )
|
||
|
Q( I, J ) = VT( JC, I ) / TEMP
|
||
|
110 CONTINUE
|
||
|
120 CONTINUE
|
||
|
*
|
||
|
* Update the right singular vector matrix.
|
||
|
*
|
||
|
IF( K.EQ.2 ) THEN
|
||
|
CALL SGEMM( 'N', 'N', K, M, K, ONE, Q, LDQ, VT2, LDVT2, ZERO,
|
||
|
$ VT, LDVT )
|
||
|
RETURN
|
||
|
END IF
|
||
|
KTEMP = 1 + CTOT( 1 )
|
||
|
CALL SGEMM( 'N', 'N', K, NLP1, KTEMP, ONE, Q( 1, 1 ), LDQ,
|
||
|
$ VT2( 1, 1 ), LDVT2, ZERO, VT( 1, 1 ), LDVT )
|
||
|
KTEMP = 2 + CTOT( 1 ) + CTOT( 2 )
|
||
|
IF( KTEMP.LE.LDVT2 )
|
||
|
$ CALL SGEMM( 'N', 'N', K, NLP1, CTOT( 3 ), ONE, Q( 1, KTEMP ),
|
||
|
$ LDQ, VT2( KTEMP, 1 ), LDVT2, ONE, VT( 1, 1 ),
|
||
|
$ LDVT )
|
||
|
*
|
||
|
KTEMP = CTOT( 1 ) + 1
|
||
|
NRP1 = NR + SQRE
|
||
|
IF( KTEMP.GT.1 ) THEN
|
||
|
DO 130 I = 1, K
|
||
|
Q( I, KTEMP ) = Q( I, 1 )
|
||
|
130 CONTINUE
|
||
|
DO 140 I = NLP2, M
|
||
|
VT2( KTEMP, I ) = VT2( 1, I )
|
||
|
140 CONTINUE
|
||
|
END IF
|
||
|
CTEMP = 1 + CTOT( 2 ) + CTOT( 3 )
|
||
|
CALL SGEMM( 'N', 'N', K, NRP1, CTEMP, ONE, Q( 1, KTEMP ), LDQ,
|
||
|
$ VT2( KTEMP, NLP2 ), LDVT2, ZERO, VT( 1, NLP2 ), LDVT )
|
||
|
*
|
||
|
RETURN
|
||
|
*
|
||
|
* End of SLASD3
|
||
|
*
|
||
|
END
|