You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
578 lines
17 KiB
578 lines
17 KiB
2 years ago
|
*> \brief \b SLASD7 merges the two sets of singular values together into a single sorted set. Then it tries to deflate the size of the problem. Used by sbdsdc.
|
||
|
*
|
||
|
* =========== DOCUMENTATION ===========
|
||
|
*
|
||
|
* Online html documentation available at
|
||
|
* http://www.netlib.org/lapack/explore-html/
|
||
|
*
|
||
|
*> \htmlonly
|
||
|
*> Download SLASD7 + dependencies
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slasd7.f">
|
||
|
*> [TGZ]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slasd7.f">
|
||
|
*> [ZIP]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slasd7.f">
|
||
|
*> [TXT]</a>
|
||
|
*> \endhtmlonly
|
||
|
*
|
||
|
* Definition:
|
||
|
* ===========
|
||
|
*
|
||
|
* SUBROUTINE SLASD7( ICOMPQ, NL, NR, SQRE, K, D, Z, ZW, VF, VFW, VL,
|
||
|
* VLW, ALPHA, BETA, DSIGMA, IDX, IDXP, IDXQ,
|
||
|
* PERM, GIVPTR, GIVCOL, LDGCOL, GIVNUM, LDGNUM,
|
||
|
* C, S, INFO )
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
* INTEGER GIVPTR, ICOMPQ, INFO, K, LDGCOL, LDGNUM, NL,
|
||
|
* $ NR, SQRE
|
||
|
* REAL ALPHA, BETA, C, S
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
* INTEGER GIVCOL( LDGCOL, * ), IDX( * ), IDXP( * ),
|
||
|
* $ IDXQ( * ), PERM( * )
|
||
|
* REAL D( * ), DSIGMA( * ), GIVNUM( LDGNUM, * ),
|
||
|
* $ VF( * ), VFW( * ), VL( * ), VLW( * ), Z( * ),
|
||
|
* $ ZW( * )
|
||
|
* ..
|
||
|
*
|
||
|
*
|
||
|
*> \par Purpose:
|
||
|
* =============
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*> SLASD7 merges the two sets of singular values together into a single
|
||
|
*> sorted set. Then it tries to deflate the size of the problem. There
|
||
|
*> are two ways in which deflation can occur: when two or more singular
|
||
|
*> values are close together or if there is a tiny entry in the Z
|
||
|
*> vector. For each such occurrence the order of the related
|
||
|
*> secular equation problem is reduced by one.
|
||
|
*>
|
||
|
*> SLASD7 is called from SLASD6.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Arguments:
|
||
|
* ==========
|
||
|
*
|
||
|
*> \param[in] ICOMPQ
|
||
|
*> \verbatim
|
||
|
*> ICOMPQ is INTEGER
|
||
|
*> Specifies whether singular vectors are to be computed
|
||
|
*> in compact form, as follows:
|
||
|
*> = 0: Compute singular values only.
|
||
|
*> = 1: Compute singular vectors of upper
|
||
|
*> bidiagonal matrix in compact form.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] NL
|
||
|
*> \verbatim
|
||
|
*> NL is INTEGER
|
||
|
*> The row dimension of the upper block. NL >= 1.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] NR
|
||
|
*> \verbatim
|
||
|
*> NR is INTEGER
|
||
|
*> The row dimension of the lower block. NR >= 1.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] SQRE
|
||
|
*> \verbatim
|
||
|
*> SQRE is INTEGER
|
||
|
*> = 0: the lower block is an NR-by-NR square matrix.
|
||
|
*> = 1: the lower block is an NR-by-(NR+1) rectangular matrix.
|
||
|
*>
|
||
|
*> The bidiagonal matrix has
|
||
|
*> N = NL + NR + 1 rows and
|
||
|
*> M = N + SQRE >= N columns.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] K
|
||
|
*> \verbatim
|
||
|
*> K is INTEGER
|
||
|
*> Contains the dimension of the non-deflated matrix, this is
|
||
|
*> the order of the related secular equation. 1 <= K <=N.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] D
|
||
|
*> \verbatim
|
||
|
*> D is REAL array, dimension ( N )
|
||
|
*> On entry D contains the singular values of the two submatrices
|
||
|
*> to be combined. On exit D contains the trailing (N-K) updated
|
||
|
*> singular values (those which were deflated) sorted into
|
||
|
*> increasing order.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] Z
|
||
|
*> \verbatim
|
||
|
*> Z is REAL array, dimension ( M )
|
||
|
*> On exit Z contains the updating row vector in the secular
|
||
|
*> equation.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] ZW
|
||
|
*> \verbatim
|
||
|
*> ZW is REAL array, dimension ( M )
|
||
|
*> Workspace for Z.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] VF
|
||
|
*> \verbatim
|
||
|
*> VF is REAL array, dimension ( M )
|
||
|
*> On entry, VF(1:NL+1) contains the first components of all
|
||
|
*> right singular vectors of the upper block; and VF(NL+2:M)
|
||
|
*> contains the first components of all right singular vectors
|
||
|
*> of the lower block. On exit, VF contains the first components
|
||
|
*> of all right singular vectors of the bidiagonal matrix.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] VFW
|
||
|
*> \verbatim
|
||
|
*> VFW is REAL array, dimension ( M )
|
||
|
*> Workspace for VF.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] VL
|
||
|
*> \verbatim
|
||
|
*> VL is REAL array, dimension ( M )
|
||
|
*> On entry, VL(1:NL+1) contains the last components of all
|
||
|
*> right singular vectors of the upper block; and VL(NL+2:M)
|
||
|
*> contains the last components of all right singular vectors
|
||
|
*> of the lower block. On exit, VL contains the last components
|
||
|
*> of all right singular vectors of the bidiagonal matrix.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] VLW
|
||
|
*> \verbatim
|
||
|
*> VLW is REAL array, dimension ( M )
|
||
|
*> Workspace for VL.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] ALPHA
|
||
|
*> \verbatim
|
||
|
*> ALPHA is REAL
|
||
|
*> Contains the diagonal element associated with the added row.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] BETA
|
||
|
*> \verbatim
|
||
|
*> BETA is REAL
|
||
|
*> Contains the off-diagonal element associated with the added
|
||
|
*> row.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] DSIGMA
|
||
|
*> \verbatim
|
||
|
*> DSIGMA is REAL array, dimension ( N )
|
||
|
*> Contains a copy of the diagonal elements (K-1 singular values
|
||
|
*> and one zero) in the secular equation.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] IDX
|
||
|
*> \verbatim
|
||
|
*> IDX is INTEGER array, dimension ( N )
|
||
|
*> This will contain the permutation used to sort the contents of
|
||
|
*> D into ascending order.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] IDXP
|
||
|
*> \verbatim
|
||
|
*> IDXP is INTEGER array, dimension ( N )
|
||
|
*> This will contain the permutation used to place deflated
|
||
|
*> values of D at the end of the array. On output IDXP(2:K)
|
||
|
*> points to the nondeflated D-values and IDXP(K+1:N)
|
||
|
*> points to the deflated singular values.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] IDXQ
|
||
|
*> \verbatim
|
||
|
*> IDXQ is INTEGER array, dimension ( N )
|
||
|
*> This contains the permutation which separately sorts the two
|
||
|
*> sub-problems in D into ascending order. Note that entries in
|
||
|
*> the first half of this permutation must first be moved one
|
||
|
*> position backward; and entries in the second half
|
||
|
*> must first have NL+1 added to their values.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] PERM
|
||
|
*> \verbatim
|
||
|
*> PERM is INTEGER array, dimension ( N )
|
||
|
*> The permutations (from deflation and sorting) to be applied
|
||
|
*> to each singular block. Not referenced if ICOMPQ = 0.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] GIVPTR
|
||
|
*> \verbatim
|
||
|
*> GIVPTR is INTEGER
|
||
|
*> The number of Givens rotations which took place in this
|
||
|
*> subproblem. Not referenced if ICOMPQ = 0.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] GIVCOL
|
||
|
*> \verbatim
|
||
|
*> GIVCOL is INTEGER array, dimension ( LDGCOL, 2 )
|
||
|
*> Each pair of numbers indicates a pair of columns to take place
|
||
|
*> in a Givens rotation. Not referenced if ICOMPQ = 0.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDGCOL
|
||
|
*> \verbatim
|
||
|
*> LDGCOL is INTEGER
|
||
|
*> The leading dimension of GIVCOL, must be at least N.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] GIVNUM
|
||
|
*> \verbatim
|
||
|
*> GIVNUM is REAL array, dimension ( LDGNUM, 2 )
|
||
|
*> Each number indicates the C or S value to be used in the
|
||
|
*> corresponding Givens rotation. Not referenced if ICOMPQ = 0.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDGNUM
|
||
|
*> \verbatim
|
||
|
*> LDGNUM is INTEGER
|
||
|
*> The leading dimension of GIVNUM, must be at least N.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] C
|
||
|
*> \verbatim
|
||
|
*> C is REAL
|
||
|
*> C contains garbage if SQRE =0 and the C-value of a Givens
|
||
|
*> rotation related to the right null space if SQRE = 1.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] S
|
||
|
*> \verbatim
|
||
|
*> S is REAL
|
||
|
*> S contains garbage if SQRE =0 and the S-value of a Givens
|
||
|
*> rotation related to the right null space if SQRE = 1.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] INFO
|
||
|
*> \verbatim
|
||
|
*> INFO is INTEGER
|
||
|
*> = 0: successful exit.
|
||
|
*> < 0: if INFO = -i, the i-th argument had an illegal value.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Authors:
|
||
|
* ========
|
||
|
*
|
||
|
*> \author Univ. of Tennessee
|
||
|
*> \author Univ. of California Berkeley
|
||
|
*> \author Univ. of Colorado Denver
|
||
|
*> \author NAG Ltd.
|
||
|
*
|
||
|
*> \ingroup OTHERauxiliary
|
||
|
*
|
||
|
*> \par Contributors:
|
||
|
* ==================
|
||
|
*>
|
||
|
*> Ming Gu and Huan Ren, Computer Science Division, University of
|
||
|
*> California at Berkeley, USA
|
||
|
*>
|
||
|
* =====================================================================
|
||
|
SUBROUTINE SLASD7( ICOMPQ, NL, NR, SQRE, K, D, Z, ZW, VF, VFW, VL,
|
||
|
$ VLW, ALPHA, BETA, DSIGMA, IDX, IDXP, IDXQ,
|
||
|
$ PERM, GIVPTR, GIVCOL, LDGCOL, GIVNUM, LDGNUM,
|
||
|
$ C, S, INFO )
|
||
|
*
|
||
|
* -- LAPACK auxiliary routine --
|
||
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
INTEGER GIVPTR, ICOMPQ, INFO, K, LDGCOL, LDGNUM, NL,
|
||
|
$ NR, SQRE
|
||
|
REAL ALPHA, BETA, C, S
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
INTEGER GIVCOL( LDGCOL, * ), IDX( * ), IDXP( * ),
|
||
|
$ IDXQ( * ), PERM( * )
|
||
|
REAL D( * ), DSIGMA( * ), GIVNUM( LDGNUM, * ),
|
||
|
$ VF( * ), VFW( * ), VL( * ), VLW( * ), Z( * ),
|
||
|
$ ZW( * )
|
||
|
* ..
|
||
|
*
|
||
|
* =====================================================================
|
||
|
*
|
||
|
* .. Parameters ..
|
||
|
REAL ZERO, ONE, TWO, EIGHT
|
||
|
PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0, TWO = 2.0E+0,
|
||
|
$ EIGHT = 8.0E+0 )
|
||
|
* ..
|
||
|
* .. Local Scalars ..
|
||
|
*
|
||
|
INTEGER I, IDXI, IDXJ, IDXJP, J, JP, JPREV, K2, M, N,
|
||
|
$ NLP1, NLP2
|
||
|
REAL EPS, HLFTOL, TAU, TOL, Z1
|
||
|
* ..
|
||
|
* .. External Subroutines ..
|
||
|
EXTERNAL SCOPY, SLAMRG, SROT, XERBLA
|
||
|
* ..
|
||
|
* .. External Functions ..
|
||
|
REAL SLAMCH, SLAPY2
|
||
|
EXTERNAL SLAMCH, SLAPY2
|
||
|
* ..
|
||
|
* .. Intrinsic Functions ..
|
||
|
INTRINSIC ABS, MAX
|
||
|
* ..
|
||
|
* .. Executable Statements ..
|
||
|
*
|
||
|
* Test the input parameters.
|
||
|
*
|
||
|
INFO = 0
|
||
|
N = NL + NR + 1
|
||
|
M = N + SQRE
|
||
|
*
|
||
|
IF( ( ICOMPQ.LT.0 ) .OR. ( ICOMPQ.GT.1 ) ) THEN
|
||
|
INFO = -1
|
||
|
ELSE IF( NL.LT.1 ) THEN
|
||
|
INFO = -2
|
||
|
ELSE IF( NR.LT.1 ) THEN
|
||
|
INFO = -3
|
||
|
ELSE IF( ( SQRE.LT.0 ) .OR. ( SQRE.GT.1 ) ) THEN
|
||
|
INFO = -4
|
||
|
ELSE IF( LDGCOL.LT.N ) THEN
|
||
|
INFO = -22
|
||
|
ELSE IF( LDGNUM.LT.N ) THEN
|
||
|
INFO = -24
|
||
|
END IF
|
||
|
IF( INFO.NE.0 ) THEN
|
||
|
CALL XERBLA( 'SLASD7', -INFO )
|
||
|
RETURN
|
||
|
END IF
|
||
|
*
|
||
|
NLP1 = NL + 1
|
||
|
NLP2 = NL + 2
|
||
|
IF( ICOMPQ.EQ.1 ) THEN
|
||
|
GIVPTR = 0
|
||
|
END IF
|
||
|
*
|
||
|
* Generate the first part of the vector Z and move the singular
|
||
|
* values in the first part of D one position backward.
|
||
|
*
|
||
|
Z1 = ALPHA*VL( NLP1 )
|
||
|
VL( NLP1 ) = ZERO
|
||
|
TAU = VF( NLP1 )
|
||
|
DO 10 I = NL, 1, -1
|
||
|
Z( I+1 ) = ALPHA*VL( I )
|
||
|
VL( I ) = ZERO
|
||
|
VF( I+1 ) = VF( I )
|
||
|
D( I+1 ) = D( I )
|
||
|
IDXQ( I+1 ) = IDXQ( I ) + 1
|
||
|
10 CONTINUE
|
||
|
VF( 1 ) = TAU
|
||
|
*
|
||
|
* Generate the second part of the vector Z.
|
||
|
*
|
||
|
DO 20 I = NLP2, M
|
||
|
Z( I ) = BETA*VF( I )
|
||
|
VF( I ) = ZERO
|
||
|
20 CONTINUE
|
||
|
*
|
||
|
* Sort the singular values into increasing order
|
||
|
*
|
||
|
DO 30 I = NLP2, N
|
||
|
IDXQ( I ) = IDXQ( I ) + NLP1
|
||
|
30 CONTINUE
|
||
|
*
|
||
|
* DSIGMA, IDXC, IDXC, and ZW are used as storage space.
|
||
|
*
|
||
|
DO 40 I = 2, N
|
||
|
DSIGMA( I ) = D( IDXQ( I ) )
|
||
|
ZW( I ) = Z( IDXQ( I ) )
|
||
|
VFW( I ) = VF( IDXQ( I ) )
|
||
|
VLW( I ) = VL( IDXQ( I ) )
|
||
|
40 CONTINUE
|
||
|
*
|
||
|
CALL SLAMRG( NL, NR, DSIGMA( 2 ), 1, 1, IDX( 2 ) )
|
||
|
*
|
||
|
DO 50 I = 2, N
|
||
|
IDXI = 1 + IDX( I )
|
||
|
D( I ) = DSIGMA( IDXI )
|
||
|
Z( I ) = ZW( IDXI )
|
||
|
VF( I ) = VFW( IDXI )
|
||
|
VL( I ) = VLW( IDXI )
|
||
|
50 CONTINUE
|
||
|
*
|
||
|
* Calculate the allowable deflation tolerance
|
||
|
*
|
||
|
EPS = SLAMCH( 'Epsilon' )
|
||
|
TOL = MAX( ABS( ALPHA ), ABS( BETA ) )
|
||
|
TOL = EIGHT*EIGHT*EPS*MAX( ABS( D( N ) ), TOL )
|
||
|
*
|
||
|
* There are 2 kinds of deflation -- first a value in the z-vector
|
||
|
* is small, second two (or more) singular values are very close
|
||
|
* together (their difference is small).
|
||
|
*
|
||
|
* If the value in the z-vector is small, we simply permute the
|
||
|
* array so that the corresponding singular value is moved to the
|
||
|
* end.
|
||
|
*
|
||
|
* If two values in the D-vector are close, we perform a two-sided
|
||
|
* rotation designed to make one of the corresponding z-vector
|
||
|
* entries zero, and then permute the array so that the deflated
|
||
|
* singular value is moved to the end.
|
||
|
*
|
||
|
* If there are multiple singular values then the problem deflates.
|
||
|
* Here the number of equal singular values are found. As each equal
|
||
|
* singular value is found, an elementary reflector is computed to
|
||
|
* rotate the corresponding singular subspace so that the
|
||
|
* corresponding components of Z are zero in this new basis.
|
||
|
*
|
||
|
K = 1
|
||
|
K2 = N + 1
|
||
|
DO 60 J = 2, N
|
||
|
IF( ABS( Z( J ) ).LE.TOL ) THEN
|
||
|
*
|
||
|
* Deflate due to small z component.
|
||
|
*
|
||
|
K2 = K2 - 1
|
||
|
IDXP( K2 ) = J
|
||
|
IF( J.EQ.N )
|
||
|
$ GO TO 100
|
||
|
ELSE
|
||
|
JPREV = J
|
||
|
GO TO 70
|
||
|
END IF
|
||
|
60 CONTINUE
|
||
|
70 CONTINUE
|
||
|
J = JPREV
|
||
|
80 CONTINUE
|
||
|
J = J + 1
|
||
|
IF( J.GT.N )
|
||
|
$ GO TO 90
|
||
|
IF( ABS( Z( J ) ).LE.TOL ) THEN
|
||
|
*
|
||
|
* Deflate due to small z component.
|
||
|
*
|
||
|
K2 = K2 - 1
|
||
|
IDXP( K2 ) = J
|
||
|
ELSE
|
||
|
*
|
||
|
* Check if singular values are close enough to allow deflation.
|
||
|
*
|
||
|
IF( ABS( D( J )-D( JPREV ) ).LE.TOL ) THEN
|
||
|
*
|
||
|
* Deflation is possible.
|
||
|
*
|
||
|
S = Z( JPREV )
|
||
|
C = Z( J )
|
||
|
*
|
||
|
* Find sqrt(a**2+b**2) without overflow or
|
||
|
* destructive underflow.
|
||
|
*
|
||
|
TAU = SLAPY2( C, S )
|
||
|
Z( J ) = TAU
|
||
|
Z( JPREV ) = ZERO
|
||
|
C = C / TAU
|
||
|
S = -S / TAU
|
||
|
*
|
||
|
* Record the appropriate Givens rotation
|
||
|
*
|
||
|
IF( ICOMPQ.EQ.1 ) THEN
|
||
|
GIVPTR = GIVPTR + 1
|
||
|
IDXJP = IDXQ( IDX( JPREV )+1 )
|
||
|
IDXJ = IDXQ( IDX( J )+1 )
|
||
|
IF( IDXJP.LE.NLP1 ) THEN
|
||
|
IDXJP = IDXJP - 1
|
||
|
END IF
|
||
|
IF( IDXJ.LE.NLP1 ) THEN
|
||
|
IDXJ = IDXJ - 1
|
||
|
END IF
|
||
|
GIVCOL( GIVPTR, 2 ) = IDXJP
|
||
|
GIVCOL( GIVPTR, 1 ) = IDXJ
|
||
|
GIVNUM( GIVPTR, 2 ) = C
|
||
|
GIVNUM( GIVPTR, 1 ) = S
|
||
|
END IF
|
||
|
CALL SROT( 1, VF( JPREV ), 1, VF( J ), 1, C, S )
|
||
|
CALL SROT( 1, VL( JPREV ), 1, VL( J ), 1, C, S )
|
||
|
K2 = K2 - 1
|
||
|
IDXP( K2 ) = JPREV
|
||
|
JPREV = J
|
||
|
ELSE
|
||
|
K = K + 1
|
||
|
ZW( K ) = Z( JPREV )
|
||
|
DSIGMA( K ) = D( JPREV )
|
||
|
IDXP( K ) = JPREV
|
||
|
JPREV = J
|
||
|
END IF
|
||
|
END IF
|
||
|
GO TO 80
|
||
|
90 CONTINUE
|
||
|
*
|
||
|
* Record the last singular value.
|
||
|
*
|
||
|
K = K + 1
|
||
|
ZW( K ) = Z( JPREV )
|
||
|
DSIGMA( K ) = D( JPREV )
|
||
|
IDXP( K ) = JPREV
|
||
|
*
|
||
|
100 CONTINUE
|
||
|
*
|
||
|
* Sort the singular values into DSIGMA. The singular values which
|
||
|
* were not deflated go into the first K slots of DSIGMA, except
|
||
|
* that DSIGMA(1) is treated separately.
|
||
|
*
|
||
|
DO 110 J = 2, N
|
||
|
JP = IDXP( J )
|
||
|
DSIGMA( J ) = D( JP )
|
||
|
VFW( J ) = VF( JP )
|
||
|
VLW( J ) = VL( JP )
|
||
|
110 CONTINUE
|
||
|
IF( ICOMPQ.EQ.1 ) THEN
|
||
|
DO 120 J = 2, N
|
||
|
JP = IDXP( J )
|
||
|
PERM( J ) = IDXQ( IDX( JP )+1 )
|
||
|
IF( PERM( J ).LE.NLP1 ) THEN
|
||
|
PERM( J ) = PERM( J ) - 1
|
||
|
END IF
|
||
|
120 CONTINUE
|
||
|
END IF
|
||
|
*
|
||
|
* The deflated singular values go back into the last N - K slots of
|
||
|
* D.
|
||
|
*
|
||
|
CALL SCOPY( N-K, DSIGMA( K+1 ), 1, D( K+1 ), 1 )
|
||
|
*
|
||
|
* Determine DSIGMA(1), DSIGMA(2), Z(1), VF(1), VL(1), VF(M), and
|
||
|
* VL(M).
|
||
|
*
|
||
|
DSIGMA( 1 ) = ZERO
|
||
|
HLFTOL = TOL / TWO
|
||
|
IF( ABS( DSIGMA( 2 ) ).LE.HLFTOL )
|
||
|
$ DSIGMA( 2 ) = HLFTOL
|
||
|
IF( M.GT.N ) THEN
|
||
|
Z( 1 ) = SLAPY2( Z1, Z( M ) )
|
||
|
IF( Z( 1 ).LE.TOL ) THEN
|
||
|
C = ONE
|
||
|
S = ZERO
|
||
|
Z( 1 ) = TOL
|
||
|
ELSE
|
||
|
C = Z1 / Z( 1 )
|
||
|
S = -Z( M ) / Z( 1 )
|
||
|
END IF
|
||
|
CALL SROT( 1, VF( M ), 1, VF( 1 ), 1, C, S )
|
||
|
CALL SROT( 1, VL( M ), 1, VL( 1 ), 1, C, S )
|
||
|
ELSE
|
||
|
IF( ABS( Z1 ).LE.TOL ) THEN
|
||
|
Z( 1 ) = TOL
|
||
|
ELSE
|
||
|
Z( 1 ) = Z1
|
||
|
END IF
|
||
|
END IF
|
||
|
*
|
||
|
* Restore Z, VF, and VL.
|
||
|
*
|
||
|
CALL SCOPY( K-1, ZW( 2 ), 1, Z( 2 ), 1 )
|
||
|
CALL SCOPY( N-1, VFW( 2 ), 1, VF( 2 ), 1 )
|
||
|
CALL SCOPY( N-1, VLW( 2 ), 1, VL( 2 ), 1 )
|
||
|
*
|
||
|
RETURN
|
||
|
*
|
||
|
* End of SLASD7
|
||
|
*
|
||
|
END
|