You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
320 lines
8.6 KiB
320 lines
8.6 KiB
2 years ago
|
*> \brief \b SORBDB6
|
||
|
*
|
||
|
* =========== DOCUMENTATION ===========
|
||
|
*
|
||
|
* Online html documentation available at
|
||
|
* http://www.netlib.org/lapack/explore-html/
|
||
|
*
|
||
|
*> \htmlonly
|
||
|
*> Download SORBDB6 + dependencies
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sorbdb6.f">
|
||
|
*> [TGZ]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sorbdb6.f">
|
||
|
*> [ZIP]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sorbdb6.f">
|
||
|
*> [TXT]</a>
|
||
|
*> \endhtmlonly
|
||
|
*
|
||
|
* Definition:
|
||
|
* ===========
|
||
|
*
|
||
|
* SUBROUTINE SORBDB6( M1, M2, N, X1, INCX1, X2, INCX2, Q1, LDQ1, Q2,
|
||
|
* LDQ2, WORK, LWORK, INFO )
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
* INTEGER INCX1, INCX2, INFO, LDQ1, LDQ2, LWORK, M1, M2,
|
||
|
* $ N
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
* REAL Q1(LDQ1,*), Q2(LDQ2,*), WORK(*), X1(*), X2(*)
|
||
|
* ..
|
||
|
*
|
||
|
*
|
||
|
*> \par Purpose:
|
||
|
* =============
|
||
|
*>
|
||
|
*>\verbatim
|
||
|
*>
|
||
|
*> SORBDB6 orthogonalizes the column vector
|
||
|
*> X = [ X1 ]
|
||
|
*> [ X2 ]
|
||
|
*> with respect to the columns of
|
||
|
*> Q = [ Q1 ] .
|
||
|
*> [ Q2 ]
|
||
|
*> The Euclidean norm of X must be one and the columns of Q must be
|
||
|
*> orthonormal. The orthogonalized vector will be zero if and only if it
|
||
|
*> lies entirely in the range of Q.
|
||
|
*>
|
||
|
*> The projection is computed with at most two iterations of the
|
||
|
*> classical Gram-Schmidt algorithm, see
|
||
|
*> * L. Giraud, J. Langou, M. Rozložník. "On the round-off error
|
||
|
*> analysis of the Gram-Schmidt algorithm with reorthogonalization."
|
||
|
*> 2002. CERFACS Technical Report No. TR/PA/02/33. URL:
|
||
|
*> https://www.cerfacs.fr/algor/reports/2002/TR_PA_02_33.pdf
|
||
|
*>
|
||
|
*>\endverbatim
|
||
|
*
|
||
|
* Arguments:
|
||
|
* ==========
|
||
|
*
|
||
|
*> \param[in] M1
|
||
|
*> \verbatim
|
||
|
*> M1 is INTEGER
|
||
|
*> The dimension of X1 and the number of rows in Q1. 0 <= M1.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] M2
|
||
|
*> \verbatim
|
||
|
*> M2 is INTEGER
|
||
|
*> The dimension of X2 and the number of rows in Q2. 0 <= M2.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] N
|
||
|
*> \verbatim
|
||
|
*> N is INTEGER
|
||
|
*> The number of columns in Q1 and Q2. 0 <= N.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] X1
|
||
|
*> \verbatim
|
||
|
*> X1 is REAL array, dimension (M1)
|
||
|
*> On entry, the top part of the vector to be orthogonalized.
|
||
|
*> On exit, the top part of the projected vector.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] INCX1
|
||
|
*> \verbatim
|
||
|
*> INCX1 is INTEGER
|
||
|
*> Increment for entries of X1.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] X2
|
||
|
*> \verbatim
|
||
|
*> X2 is REAL array, dimension (M2)
|
||
|
*> On entry, the bottom part of the vector to be
|
||
|
*> orthogonalized. On exit, the bottom part of the projected
|
||
|
*> vector.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] INCX2
|
||
|
*> \verbatim
|
||
|
*> INCX2 is INTEGER
|
||
|
*> Increment for entries of X2.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] Q1
|
||
|
*> \verbatim
|
||
|
*> Q1 is REAL array, dimension (LDQ1, N)
|
||
|
*> The top part of the orthonormal basis matrix.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDQ1
|
||
|
*> \verbatim
|
||
|
*> LDQ1 is INTEGER
|
||
|
*> The leading dimension of Q1. LDQ1 >= M1.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] Q2
|
||
|
*> \verbatim
|
||
|
*> Q2 is REAL array, dimension (LDQ2, N)
|
||
|
*> The bottom part of the orthonormal basis matrix.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDQ2
|
||
|
*> \verbatim
|
||
|
*> LDQ2 is INTEGER
|
||
|
*> The leading dimension of Q2. LDQ2 >= M2.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] WORK
|
||
|
*> \verbatim
|
||
|
*> WORK is REAL array, dimension (LWORK)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LWORK
|
||
|
*> \verbatim
|
||
|
*> LWORK is INTEGER
|
||
|
*> The dimension of the array WORK. LWORK >= N.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] INFO
|
||
|
*> \verbatim
|
||
|
*> INFO is INTEGER
|
||
|
*> = 0: successful exit.
|
||
|
*> < 0: if INFO = -i, the i-th argument had an illegal value.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Authors:
|
||
|
* ========
|
||
|
*
|
||
|
*> \author Univ. of Tennessee
|
||
|
*> \author Univ. of California Berkeley
|
||
|
*> \author Univ. of Colorado Denver
|
||
|
*> \author NAG Ltd.
|
||
|
*
|
||
|
*> \ingroup realOTHERcomputational
|
||
|
*
|
||
|
* =====================================================================
|
||
|
SUBROUTINE SORBDB6( M1, M2, N, X1, INCX1, X2, INCX2, Q1, LDQ1, Q2,
|
||
|
$ LDQ2, WORK, LWORK, INFO )
|
||
|
*
|
||
|
* -- LAPACK computational routine --
|
||
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
INTEGER INCX1, INCX2, INFO, LDQ1, LDQ2, LWORK, M1, M2,
|
||
|
$ N
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
REAL Q1(LDQ1,*), Q2(LDQ2,*), WORK(*), X1(*), X2(*)
|
||
|
* ..
|
||
|
*
|
||
|
* =====================================================================
|
||
|
*
|
||
|
* .. Parameters ..
|
||
|
REAL ALPHA, REALONE, REALZERO
|
||
|
PARAMETER ( ALPHA = 0.01E0, REALONE = 1.0E0,
|
||
|
$ REALZERO = 0.0E0 )
|
||
|
REAL NEGONE, ONE, ZERO
|
||
|
PARAMETER ( NEGONE = -1.0E0, ONE = 1.0E0, ZERO = 0.0E0 )
|
||
|
* ..
|
||
|
* .. Local Scalars ..
|
||
|
INTEGER I, IX
|
||
|
REAL EPS, NORM, NORM_NEW, SCL, SSQ
|
||
|
* ..
|
||
|
* .. External Functions ..
|
||
|
REAL SLAMCH
|
||
|
* ..
|
||
|
* .. External Subroutines ..
|
||
|
EXTERNAL SGEMV, SLASSQ, XERBLA
|
||
|
* ..
|
||
|
* .. Intrinsic Function ..
|
||
|
INTRINSIC MAX
|
||
|
* ..
|
||
|
* .. Executable Statements ..
|
||
|
*
|
||
|
* Test input arguments
|
||
|
*
|
||
|
INFO = 0
|
||
|
IF( M1 .LT. 0 ) THEN
|
||
|
INFO = -1
|
||
|
ELSE IF( M2 .LT. 0 ) THEN
|
||
|
INFO = -2
|
||
|
ELSE IF( N .LT. 0 ) THEN
|
||
|
INFO = -3
|
||
|
ELSE IF( INCX1 .LT. 1 ) THEN
|
||
|
INFO = -5
|
||
|
ELSE IF( INCX2 .LT. 1 ) THEN
|
||
|
INFO = -7
|
||
|
ELSE IF( LDQ1 .LT. MAX( 1, M1 ) ) THEN
|
||
|
INFO = -9
|
||
|
ELSE IF( LDQ2 .LT. MAX( 1, M2 ) ) THEN
|
||
|
INFO = -11
|
||
|
ELSE IF( LWORK .LT. N ) THEN
|
||
|
INFO = -13
|
||
|
END IF
|
||
|
*
|
||
|
IF( INFO .NE. 0 ) THEN
|
||
|
CALL XERBLA( 'SORBDB6', -INFO )
|
||
|
RETURN
|
||
|
END IF
|
||
|
*
|
||
|
EPS = SLAMCH( 'Precision' )
|
||
|
*
|
||
|
* First, project X onto the orthogonal complement of Q's column
|
||
|
* space
|
||
|
*
|
||
|
* Christoph Conrads: In debugging mode the norm should be computed
|
||
|
* and an assertion added comparing the norm with one. Alas, Fortran
|
||
|
* never made it into 1989 when assert() was introduced into the C
|
||
|
* programming language.
|
||
|
NORM = REALONE
|
||
|
*
|
||
|
IF( M1 .EQ. 0 ) THEN
|
||
|
DO I = 1, N
|
||
|
WORK(I) = ZERO
|
||
|
END DO
|
||
|
ELSE
|
||
|
CALL SGEMV( 'C', M1, N, ONE, Q1, LDQ1, X1, INCX1, ZERO, WORK,
|
||
|
$ 1 )
|
||
|
END IF
|
||
|
*
|
||
|
CALL SGEMV( 'C', M2, N, ONE, Q2, LDQ2, X2, INCX2, ONE, WORK, 1 )
|
||
|
*
|
||
|
CALL SGEMV( 'N', M1, N, NEGONE, Q1, LDQ1, WORK, 1, ONE, X1,
|
||
|
$ INCX1 )
|
||
|
CALL SGEMV( 'N', M2, N, NEGONE, Q2, LDQ2, WORK, 1, ONE, X2,
|
||
|
$ INCX2 )
|
||
|
*
|
||
|
SCL = REALZERO
|
||
|
SSQ = REALZERO
|
||
|
CALL SLASSQ( M1, X1, INCX1, SCL, SSQ )
|
||
|
CALL SLASSQ( M2, X2, INCX2, SCL, SSQ )
|
||
|
NORM_NEW = SCL * SQRT(SSQ)
|
||
|
*
|
||
|
* If projection is sufficiently large in norm, then stop.
|
||
|
* If projection is zero, then stop.
|
||
|
* Otherwise, project again.
|
||
|
*
|
||
|
IF( NORM_NEW .GE. ALPHA * NORM ) THEN
|
||
|
RETURN
|
||
|
END IF
|
||
|
*
|
||
|
IF( NORM_NEW .LE. N * EPS * NORM ) THEN
|
||
|
DO IX = 1, 1 + (M1-1)*INCX1, INCX1
|
||
|
X1( IX ) = ZERO
|
||
|
END DO
|
||
|
DO IX = 1, 1 + (M2-1)*INCX2, INCX2
|
||
|
X2( IX ) = ZERO
|
||
|
END DO
|
||
|
RETURN
|
||
|
END IF
|
||
|
*
|
||
|
NORM = NORM_NEW
|
||
|
*
|
||
|
DO I = 1, N
|
||
|
WORK(I) = ZERO
|
||
|
END DO
|
||
|
*
|
||
|
IF( M1 .EQ. 0 ) THEN
|
||
|
DO I = 1, N
|
||
|
WORK(I) = ZERO
|
||
|
END DO
|
||
|
ELSE
|
||
|
CALL SGEMV( 'C', M1, N, ONE, Q1, LDQ1, X1, INCX1, ZERO, WORK,
|
||
|
$ 1 )
|
||
|
END IF
|
||
|
*
|
||
|
CALL SGEMV( 'C', M2, N, ONE, Q2, LDQ2, X2, INCX2, ONE, WORK, 1 )
|
||
|
*
|
||
|
CALL SGEMV( 'N', M1, N, NEGONE, Q1, LDQ1, WORK, 1, ONE, X1,
|
||
|
$ INCX1 )
|
||
|
CALL SGEMV( 'N', M2, N, NEGONE, Q2, LDQ2, WORK, 1, ONE, X2,
|
||
|
$ INCX2 )
|
||
|
*
|
||
|
SCL = REALZERO
|
||
|
SSQ = REALZERO
|
||
|
CALL SLASSQ( M1, X1, INCX1, SCL, SSQ )
|
||
|
CALL SLASSQ( M2, X2, INCX2, SCL, SSQ )
|
||
|
NORM_NEW = SCL * SQRT(SSQ)
|
||
|
*
|
||
|
* If second projection is sufficiently large in norm, then do
|
||
|
* nothing more. Alternatively, if it shrunk significantly, then
|
||
|
* truncate it to zero.
|
||
|
*
|
||
|
IF( NORM_NEW .LT. ALPHA * NORM ) THEN
|
||
|
DO IX = 1, 1 + (M1-1)*INCX1, INCX1
|
||
|
X1(IX) = ZERO
|
||
|
END DO
|
||
|
DO IX = 1, 1 + (M2-1)*INCX2, INCX2
|
||
|
X2(IX) = ZERO
|
||
|
END DO
|
||
|
END IF
|
||
|
*
|
||
|
RETURN
|
||
|
*
|
||
|
* End of SORBDB6
|
||
|
*
|
||
|
END
|