You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
519 lines
16 KiB
519 lines
16 KiB
2 years ago
|
*> \brief \b SSBGVX
|
||
|
*
|
||
|
* =========== DOCUMENTATION ===========
|
||
|
*
|
||
|
* Online html documentation available at
|
||
|
* http://www.netlib.org/lapack/explore-html/
|
||
|
*
|
||
|
*> \htmlonly
|
||
|
*> Download SSBGVX + dependencies
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ssbgvx.f">
|
||
|
*> [TGZ]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ssbgvx.f">
|
||
|
*> [ZIP]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ssbgvx.f">
|
||
|
*> [TXT]</a>
|
||
|
*> \endhtmlonly
|
||
|
*
|
||
|
* Definition:
|
||
|
* ===========
|
||
|
*
|
||
|
* SUBROUTINE SSBGVX( JOBZ, RANGE, UPLO, N, KA, KB, AB, LDAB, BB,
|
||
|
* LDBB, Q, LDQ, VL, VU, IL, IU, ABSTOL, M, W, Z,
|
||
|
* LDZ, WORK, IWORK, IFAIL, INFO )
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
* CHARACTER JOBZ, RANGE, UPLO
|
||
|
* INTEGER IL, INFO, IU, KA, KB, LDAB, LDBB, LDQ, LDZ, M,
|
||
|
* $ N
|
||
|
* REAL ABSTOL, VL, VU
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
* INTEGER IFAIL( * ), IWORK( * )
|
||
|
* REAL AB( LDAB, * ), BB( LDBB, * ), Q( LDQ, * ),
|
||
|
* $ W( * ), WORK( * ), Z( LDZ, * )
|
||
|
* ..
|
||
|
*
|
||
|
*
|
||
|
*> \par Purpose:
|
||
|
* =============
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*> SSBGVX computes selected eigenvalues, and optionally, eigenvectors
|
||
|
*> of a real generalized symmetric-definite banded eigenproblem, of
|
||
|
*> the form A*x=(lambda)*B*x. Here A and B are assumed to be symmetric
|
||
|
*> and banded, and B is also positive definite. Eigenvalues and
|
||
|
*> eigenvectors can be selected by specifying either all eigenvalues,
|
||
|
*> a range of values or a range of indices for the desired eigenvalues.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Arguments:
|
||
|
* ==========
|
||
|
*
|
||
|
*> \param[in] JOBZ
|
||
|
*> \verbatim
|
||
|
*> JOBZ is CHARACTER*1
|
||
|
*> = 'N': Compute eigenvalues only;
|
||
|
*> = 'V': Compute eigenvalues and eigenvectors.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] RANGE
|
||
|
*> \verbatim
|
||
|
*> RANGE is CHARACTER*1
|
||
|
*> = 'A': all eigenvalues will be found.
|
||
|
*> = 'V': all eigenvalues in the half-open interval (VL,VU]
|
||
|
*> will be found.
|
||
|
*> = 'I': the IL-th through IU-th eigenvalues will be found.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] UPLO
|
||
|
*> \verbatim
|
||
|
*> UPLO is CHARACTER*1
|
||
|
*> = 'U': Upper triangles of A and B are stored;
|
||
|
*> = 'L': Lower triangles of A and B are stored.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] N
|
||
|
*> \verbatim
|
||
|
*> N is INTEGER
|
||
|
*> The order of the matrices A and B. N >= 0.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] KA
|
||
|
*> \verbatim
|
||
|
*> KA is INTEGER
|
||
|
*> The number of superdiagonals of the matrix A if UPLO = 'U',
|
||
|
*> or the number of subdiagonals if UPLO = 'L'. KA >= 0.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] KB
|
||
|
*> \verbatim
|
||
|
*> KB is INTEGER
|
||
|
*> The number of superdiagonals of the matrix B if UPLO = 'U',
|
||
|
*> or the number of subdiagonals if UPLO = 'L'. KB >= 0.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] AB
|
||
|
*> \verbatim
|
||
|
*> AB is REAL array, dimension (LDAB, N)
|
||
|
*> On entry, the upper or lower triangle of the symmetric band
|
||
|
*> matrix A, stored in the first ka+1 rows of the array. The
|
||
|
*> j-th column of A is stored in the j-th column of the array AB
|
||
|
*> as follows:
|
||
|
*> if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j;
|
||
|
*> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+ka).
|
||
|
*>
|
||
|
*> On exit, the contents of AB are destroyed.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDAB
|
||
|
*> \verbatim
|
||
|
*> LDAB is INTEGER
|
||
|
*> The leading dimension of the array AB. LDAB >= KA+1.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] BB
|
||
|
*> \verbatim
|
||
|
*> BB is REAL array, dimension (LDBB, N)
|
||
|
*> On entry, the upper or lower triangle of the symmetric band
|
||
|
*> matrix B, stored in the first kb+1 rows of the array. The
|
||
|
*> j-th column of B is stored in the j-th column of the array BB
|
||
|
*> as follows:
|
||
|
*> if UPLO = 'U', BB(ka+1+i-j,j) = B(i,j) for max(1,j-kb)<=i<=j;
|
||
|
*> if UPLO = 'L', BB(1+i-j,j) = B(i,j) for j<=i<=min(n,j+kb).
|
||
|
*>
|
||
|
*> On exit, the factor S from the split Cholesky factorization
|
||
|
*> B = S**T*S, as returned by SPBSTF.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDBB
|
||
|
*> \verbatim
|
||
|
*> LDBB is INTEGER
|
||
|
*> The leading dimension of the array BB. LDBB >= KB+1.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] Q
|
||
|
*> \verbatim
|
||
|
*> Q is REAL array, dimension (LDQ, N)
|
||
|
*> If JOBZ = 'V', the n-by-n matrix used in the reduction of
|
||
|
*> A*x = (lambda)*B*x to standard form, i.e. C*x = (lambda)*x,
|
||
|
*> and consequently C to tridiagonal form.
|
||
|
*> If JOBZ = 'N', the array Q is not referenced.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDQ
|
||
|
*> \verbatim
|
||
|
*> LDQ is INTEGER
|
||
|
*> The leading dimension of the array Q. If JOBZ = 'N',
|
||
|
*> LDQ >= 1. If JOBZ = 'V', LDQ >= max(1,N).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] VL
|
||
|
*> \verbatim
|
||
|
*> VL is REAL
|
||
|
*>
|
||
|
*> If RANGE='V', the lower bound of the interval to
|
||
|
*> be searched for eigenvalues. VL < VU.
|
||
|
*> Not referenced if RANGE = 'A' or 'I'.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] VU
|
||
|
*> \verbatim
|
||
|
*> VU is REAL
|
||
|
*>
|
||
|
*> If RANGE='V', the upper bound of the interval to
|
||
|
*> be searched for eigenvalues. VL < VU.
|
||
|
*> Not referenced if RANGE = 'A' or 'I'.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] IL
|
||
|
*> \verbatim
|
||
|
*> IL is INTEGER
|
||
|
*>
|
||
|
*> If RANGE='I', the index of the
|
||
|
*> smallest eigenvalue to be returned.
|
||
|
*> 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
|
||
|
*> Not referenced if RANGE = 'A' or 'V'.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] IU
|
||
|
*> \verbatim
|
||
|
*> IU is INTEGER
|
||
|
*>
|
||
|
*> If RANGE='I', the index of the
|
||
|
*> largest eigenvalue to be returned.
|
||
|
*> 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
|
||
|
*> Not referenced if RANGE = 'A' or 'V'.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] ABSTOL
|
||
|
*> \verbatim
|
||
|
*> ABSTOL is REAL
|
||
|
*> The absolute error tolerance for the eigenvalues.
|
||
|
*> An approximate eigenvalue is accepted as converged
|
||
|
*> when it is determined to lie in an interval [a,b]
|
||
|
*> of width less than or equal to
|
||
|
*>
|
||
|
*> ABSTOL + EPS * max( |a|,|b| ) ,
|
||
|
*>
|
||
|
*> where EPS is the machine precision. If ABSTOL is less than
|
||
|
*> or equal to zero, then EPS*|T| will be used in its place,
|
||
|
*> where |T| is the 1-norm of the tridiagonal matrix obtained
|
||
|
*> by reducing A to tridiagonal form.
|
||
|
*>
|
||
|
*> Eigenvalues will be computed most accurately when ABSTOL is
|
||
|
*> set to twice the underflow threshold 2*SLAMCH('S'), not zero.
|
||
|
*> If this routine returns with INFO>0, indicating that some
|
||
|
*> eigenvectors did not converge, try setting ABSTOL to
|
||
|
*> 2*SLAMCH('S').
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] M
|
||
|
*> \verbatim
|
||
|
*> M is INTEGER
|
||
|
*> The total number of eigenvalues found. 0 <= M <= N.
|
||
|
*> If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] W
|
||
|
*> \verbatim
|
||
|
*> W is REAL array, dimension (N)
|
||
|
*> If INFO = 0, the eigenvalues in ascending order.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] Z
|
||
|
*> \verbatim
|
||
|
*> Z is REAL array, dimension (LDZ, N)
|
||
|
*> If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of
|
||
|
*> eigenvectors, with the i-th column of Z holding the
|
||
|
*> eigenvector associated with W(i). The eigenvectors are
|
||
|
*> normalized so Z**T*B*Z = I.
|
||
|
*> If JOBZ = 'N', then Z is not referenced.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDZ
|
||
|
*> \verbatim
|
||
|
*> LDZ is INTEGER
|
||
|
*> The leading dimension of the array Z. LDZ >= 1, and if
|
||
|
*> JOBZ = 'V', LDZ >= max(1,N).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] WORK
|
||
|
*> \verbatim
|
||
|
*> WORK is REAL array, dimension (7*N)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] IWORK
|
||
|
*> \verbatim
|
||
|
*> IWORK is INTEGER array, dimension (5*N)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] IFAIL
|
||
|
*> \verbatim
|
||
|
*> IFAIL is INTEGER array, dimension (M)
|
||
|
*> If JOBZ = 'V', then if INFO = 0, the first M elements of
|
||
|
*> IFAIL are zero. If INFO > 0, then IFAIL contains the
|
||
|
*> indices of the eigenvalues that failed to converge.
|
||
|
*> If JOBZ = 'N', then IFAIL is not referenced.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] INFO
|
||
|
*> \verbatim
|
||
|
*> INFO is INTEGER
|
||
|
*> = 0: successful exit
|
||
|
*> < 0: if INFO = -i, the i-th argument had an illegal value
|
||
|
*> <= N: if INFO = i, then i eigenvectors failed to converge.
|
||
|
*> Their indices are stored in IFAIL.
|
||
|
*> > N: SPBSTF returned an error code; i.e.,
|
||
|
*> if INFO = N + i, for 1 <= i <= N, then the leading
|
||
|
*> principal minor of order i of B is not positive.
|
||
|
*> The factorization of B could not be completed and
|
||
|
*> no eigenvalues or eigenvectors were computed.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Authors:
|
||
|
* ========
|
||
|
*
|
||
|
*> \author Univ. of Tennessee
|
||
|
*> \author Univ. of California Berkeley
|
||
|
*> \author Univ. of Colorado Denver
|
||
|
*> \author NAG Ltd.
|
||
|
*
|
||
|
*> \ingroup realOTHEReigen
|
||
|
*
|
||
|
*> \par Contributors:
|
||
|
* ==================
|
||
|
*>
|
||
|
*> Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
|
||
|
*
|
||
|
* =====================================================================
|
||
|
SUBROUTINE SSBGVX( JOBZ, RANGE, UPLO, N, KA, KB, AB, LDAB, BB,
|
||
|
$ LDBB, Q, LDQ, VL, VU, IL, IU, ABSTOL, M, W, Z,
|
||
|
$ LDZ, WORK, IWORK, IFAIL, INFO )
|
||
|
*
|
||
|
* -- LAPACK driver routine --
|
||
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
CHARACTER JOBZ, RANGE, UPLO
|
||
|
INTEGER IL, INFO, IU, KA, KB, LDAB, LDBB, LDQ, LDZ, M,
|
||
|
$ N
|
||
|
REAL ABSTOL, VL, VU
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
INTEGER IFAIL( * ), IWORK( * )
|
||
|
REAL AB( LDAB, * ), BB( LDBB, * ), Q( LDQ, * ),
|
||
|
$ W( * ), WORK( * ), Z( LDZ, * )
|
||
|
* ..
|
||
|
*
|
||
|
* =====================================================================
|
||
|
*
|
||
|
* .. Parameters ..
|
||
|
REAL ZERO, ONE
|
||
|
PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
|
||
|
* ..
|
||
|
* .. Local Scalars ..
|
||
|
LOGICAL ALLEIG, INDEIG, TEST, UPPER, VALEIG, WANTZ
|
||
|
CHARACTER ORDER, VECT
|
||
|
INTEGER I, IINFO, INDD, INDE, INDEE, INDISP,
|
||
|
$ INDIWO, INDWRK, ITMP1, J, JJ, NSPLIT
|
||
|
REAL TMP1
|
||
|
* ..
|
||
|
* .. External Functions ..
|
||
|
LOGICAL LSAME
|
||
|
EXTERNAL LSAME
|
||
|
* ..
|
||
|
* .. External Subroutines ..
|
||
|
EXTERNAL SCOPY, SGEMV, SLACPY, SPBSTF, SSBGST, SSBTRD,
|
||
|
$ SSTEBZ, SSTEIN, SSTEQR, SSTERF, SSWAP, XERBLA
|
||
|
* ..
|
||
|
* .. Intrinsic Functions ..
|
||
|
INTRINSIC MIN
|
||
|
* ..
|
||
|
* .. Executable Statements ..
|
||
|
*
|
||
|
* Test the input parameters.
|
||
|
*
|
||
|
WANTZ = LSAME( JOBZ, 'V' )
|
||
|
UPPER = LSAME( UPLO, 'U' )
|
||
|
ALLEIG = LSAME( RANGE, 'A' )
|
||
|
VALEIG = LSAME( RANGE, 'V' )
|
||
|
INDEIG = LSAME( RANGE, 'I' )
|
||
|
*
|
||
|
INFO = 0
|
||
|
IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
|
||
|
INFO = -1
|
||
|
ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
|
||
|
INFO = -2
|
||
|
ELSE IF( .NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN
|
||
|
INFO = -3
|
||
|
ELSE IF( N.LT.0 ) THEN
|
||
|
INFO = -4
|
||
|
ELSE IF( KA.LT.0 ) THEN
|
||
|
INFO = -5
|
||
|
ELSE IF( KB.LT.0 .OR. KB.GT.KA ) THEN
|
||
|
INFO = -6
|
||
|
ELSE IF( LDAB.LT.KA+1 ) THEN
|
||
|
INFO = -8
|
||
|
ELSE IF( LDBB.LT.KB+1 ) THEN
|
||
|
INFO = -10
|
||
|
ELSE IF( LDQ.LT.1 .OR. ( WANTZ .AND. LDQ.LT.N ) ) THEN
|
||
|
INFO = -12
|
||
|
ELSE
|
||
|
IF( VALEIG ) THEN
|
||
|
IF( N.GT.0 .AND. VU.LE.VL )
|
||
|
$ INFO = -14
|
||
|
ELSE IF( INDEIG ) THEN
|
||
|
IF( IL.LT.1 .OR. IL.GT.MAX( 1, N ) ) THEN
|
||
|
INFO = -15
|
||
|
ELSE IF ( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
|
||
|
INFO = -16
|
||
|
END IF
|
||
|
END IF
|
||
|
END IF
|
||
|
IF( INFO.EQ.0) THEN
|
||
|
IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
|
||
|
INFO = -21
|
||
|
END IF
|
||
|
END IF
|
||
|
*
|
||
|
IF( INFO.NE.0 ) THEN
|
||
|
CALL XERBLA( 'SSBGVX', -INFO )
|
||
|
RETURN
|
||
|
END IF
|
||
|
*
|
||
|
* Quick return if possible
|
||
|
*
|
||
|
M = 0
|
||
|
IF( N.EQ.0 )
|
||
|
$ RETURN
|
||
|
*
|
||
|
* Form a split Cholesky factorization of B.
|
||
|
*
|
||
|
CALL SPBSTF( UPLO, N, KB, BB, LDBB, INFO )
|
||
|
IF( INFO.NE.0 ) THEN
|
||
|
INFO = N + INFO
|
||
|
RETURN
|
||
|
END IF
|
||
|
*
|
||
|
* Transform problem to standard eigenvalue problem.
|
||
|
*
|
||
|
CALL SSBGST( JOBZ, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, Q, LDQ,
|
||
|
$ WORK, IINFO )
|
||
|
*
|
||
|
* Reduce symmetric band matrix to tridiagonal form.
|
||
|
*
|
||
|
INDD = 1
|
||
|
INDE = INDD + N
|
||
|
INDWRK = INDE + N
|
||
|
IF( WANTZ ) THEN
|
||
|
VECT = 'U'
|
||
|
ELSE
|
||
|
VECT = 'N'
|
||
|
END IF
|
||
|
CALL SSBTRD( VECT, UPLO, N, KA, AB, LDAB, WORK( INDD ),
|
||
|
$ WORK( INDE ), Q, LDQ, WORK( INDWRK ), IINFO )
|
||
|
*
|
||
|
* If all eigenvalues are desired and ABSTOL is less than or equal
|
||
|
* to zero, then call SSTERF or SSTEQR. If this fails for some
|
||
|
* eigenvalue, then try SSTEBZ.
|
||
|
*
|
||
|
TEST = .FALSE.
|
||
|
IF( INDEIG ) THEN
|
||
|
IF( IL.EQ.1 .AND. IU.EQ.N ) THEN
|
||
|
TEST = .TRUE.
|
||
|
END IF
|
||
|
END IF
|
||
|
IF( ( ALLEIG .OR. TEST ) .AND. ( ABSTOL.LE.ZERO ) ) THEN
|
||
|
CALL SCOPY( N, WORK( INDD ), 1, W, 1 )
|
||
|
INDEE = INDWRK + 2*N
|
||
|
CALL SCOPY( N-1, WORK( INDE ), 1, WORK( INDEE ), 1 )
|
||
|
IF( .NOT.WANTZ ) THEN
|
||
|
CALL SSTERF( N, W, WORK( INDEE ), INFO )
|
||
|
ELSE
|
||
|
CALL SLACPY( 'A', N, N, Q, LDQ, Z, LDZ )
|
||
|
CALL SSTEQR( JOBZ, N, W, WORK( INDEE ), Z, LDZ,
|
||
|
$ WORK( INDWRK ), INFO )
|
||
|
IF( INFO.EQ.0 ) THEN
|
||
|
DO 10 I = 1, N
|
||
|
IFAIL( I ) = 0
|
||
|
10 CONTINUE
|
||
|
END IF
|
||
|
END IF
|
||
|
IF( INFO.EQ.0 ) THEN
|
||
|
M = N
|
||
|
GO TO 30
|
||
|
END IF
|
||
|
INFO = 0
|
||
|
END IF
|
||
|
*
|
||
|
* Otherwise, call SSTEBZ and, if eigenvectors are desired,
|
||
|
* call SSTEIN.
|
||
|
*
|
||
|
IF( WANTZ ) THEN
|
||
|
ORDER = 'B'
|
||
|
ELSE
|
||
|
ORDER = 'E'
|
||
|
END IF
|
||
|
INDISP = 1 + N
|
||
|
INDIWO = INDISP + N
|
||
|
CALL SSTEBZ( RANGE, ORDER, N, VL, VU, IL, IU, ABSTOL,
|
||
|
$ WORK( INDD ), WORK( INDE ), M, NSPLIT, W,
|
||
|
$ IWORK( 1 ), IWORK( INDISP ), WORK( INDWRK ),
|
||
|
$ IWORK( INDIWO ), INFO )
|
||
|
*
|
||
|
IF( WANTZ ) THEN
|
||
|
CALL SSTEIN( N, WORK( INDD ), WORK( INDE ), M, W,
|
||
|
$ IWORK( 1 ), IWORK( INDISP ), Z, LDZ,
|
||
|
$ WORK( INDWRK ), IWORK( INDIWO ), IFAIL, INFO )
|
||
|
*
|
||
|
* Apply transformation matrix used in reduction to tridiagonal
|
||
|
* form to eigenvectors returned by SSTEIN.
|
||
|
*
|
||
|
DO 20 J = 1, M
|
||
|
CALL SCOPY( N, Z( 1, J ), 1, WORK( 1 ), 1 )
|
||
|
CALL SGEMV( 'N', N, N, ONE, Q, LDQ, WORK, 1, ZERO,
|
||
|
$ Z( 1, J ), 1 )
|
||
|
20 CONTINUE
|
||
|
END IF
|
||
|
*
|
||
|
30 CONTINUE
|
||
|
*
|
||
|
* If eigenvalues are not in order, then sort them, along with
|
||
|
* eigenvectors.
|
||
|
*
|
||
|
IF( WANTZ ) THEN
|
||
|
DO 50 J = 1, M - 1
|
||
|
I = 0
|
||
|
TMP1 = W( J )
|
||
|
DO 40 JJ = J + 1, M
|
||
|
IF( W( JJ ).LT.TMP1 ) THEN
|
||
|
I = JJ
|
||
|
TMP1 = W( JJ )
|
||
|
END IF
|
||
|
40 CONTINUE
|
||
|
*
|
||
|
IF( I.NE.0 ) THEN
|
||
|
ITMP1 = IWORK( 1 + I-1 )
|
||
|
W( I ) = W( J )
|
||
|
IWORK( 1 + I-1 ) = IWORK( 1 + J-1 )
|
||
|
W( J ) = TMP1
|
||
|
IWORK( 1 + J-1 ) = ITMP1
|
||
|
CALL SSWAP( N, Z( 1, I ), 1, Z( 1, J ), 1 )
|
||
|
IF( INFO.NE.0 ) THEN
|
||
|
ITMP1 = IFAIL( I )
|
||
|
IFAIL( I ) = IFAIL( J )
|
||
|
IFAIL( J ) = ITMP1
|
||
|
END IF
|
||
|
END IF
|
||
|
50 CONTINUE
|
||
|
END IF
|
||
|
*
|
||
|
RETURN
|
||
|
*
|
||
|
* End of SSBGVX
|
||
|
*
|
||
|
END
|