You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
364 lines
8.8 KiB
364 lines
8.8 KiB
2 years ago
|
*> \brief \b SSYCONV
|
||
|
*
|
||
|
* =========== DOCUMENTATION ===========
|
||
|
*
|
||
|
* Online html documentation available at
|
||
|
* http://www.netlib.org/lapack/explore-html/
|
||
|
*
|
||
|
*> \htmlonly
|
||
|
*> Download SSYCONV + dependencies
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ssyconv.f">
|
||
|
*> [TGZ]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ssyconv.f">
|
||
|
*> [ZIP]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ssyconv.f">
|
||
|
*> [TXT]</a>
|
||
|
*> \endhtmlonly
|
||
|
*
|
||
|
* Definition:
|
||
|
* ===========
|
||
|
*
|
||
|
* SUBROUTINE SSYCONV( UPLO, WAY, N, A, LDA, IPIV, E, INFO )
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
* CHARACTER UPLO, WAY
|
||
|
* INTEGER INFO, LDA, N
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
* INTEGER IPIV( * )
|
||
|
* REAL A( LDA, * ), E( * )
|
||
|
* ..
|
||
|
*
|
||
|
*
|
||
|
*> \par Purpose:
|
||
|
* =============
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*> SSYCONV convert A given by TRF into L and D and vice-versa.
|
||
|
*> Get Non-diag elements of D (returned in workspace) and
|
||
|
*> apply or reverse permutation done in TRF.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Arguments:
|
||
|
* ==========
|
||
|
*
|
||
|
*> \param[in] UPLO
|
||
|
*> \verbatim
|
||
|
*> UPLO is CHARACTER*1
|
||
|
*> Specifies whether the details of the factorization are stored
|
||
|
*> as an upper or lower triangular matrix.
|
||
|
*> = 'U': Upper triangular, form is A = U*D*U**T;
|
||
|
*> = 'L': Lower triangular, form is A = L*D*L**T.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] WAY
|
||
|
*> \verbatim
|
||
|
*> WAY is CHARACTER*1
|
||
|
*> = 'C': Convert
|
||
|
*> = 'R': Revert
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] N
|
||
|
*> \verbatim
|
||
|
*> N is INTEGER
|
||
|
*> The order of the matrix A. N >= 0.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] A
|
||
|
*> \verbatim
|
||
|
*> A is REAL array, dimension (LDA,N)
|
||
|
*> The block diagonal matrix D and the multipliers used to
|
||
|
*> obtain the factor U or L as computed by SSYTRF.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDA
|
||
|
*> \verbatim
|
||
|
*> LDA is INTEGER
|
||
|
*> The leading dimension of the array A. LDA >= max(1,N).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] IPIV
|
||
|
*> \verbatim
|
||
|
*> IPIV is INTEGER array, dimension (N)
|
||
|
*> Details of the interchanges and the block structure of D
|
||
|
*> as determined by SSYTRF.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] E
|
||
|
*> \verbatim
|
||
|
*> E is REAL array, dimension (N)
|
||
|
*> E stores the supdiagonal/subdiagonal of the symmetric 1-by-1
|
||
|
*> or 2-by-2 block diagonal matrix D in LDLT.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] INFO
|
||
|
*> \verbatim
|
||
|
*> INFO is INTEGER
|
||
|
*> = 0: successful exit
|
||
|
*> < 0: if INFO = -i, the i-th argument had an illegal value
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Authors:
|
||
|
* ========
|
||
|
*
|
||
|
*> \author Univ. of Tennessee
|
||
|
*> \author Univ. of California Berkeley
|
||
|
*> \author Univ. of Colorado Denver
|
||
|
*> \author NAG Ltd.
|
||
|
*
|
||
|
*> \ingroup realSYcomputational
|
||
|
*
|
||
|
* =====================================================================
|
||
|
SUBROUTINE SSYCONV( UPLO, WAY, N, A, LDA, IPIV, E, INFO )
|
||
|
*
|
||
|
* -- LAPACK computational routine --
|
||
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
CHARACTER UPLO, WAY
|
||
|
INTEGER INFO, LDA, N
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
INTEGER IPIV( * )
|
||
|
REAL A( LDA, * ), E( * )
|
||
|
* ..
|
||
|
*
|
||
|
* =====================================================================
|
||
|
*
|
||
|
* .. Parameters ..
|
||
|
REAL ZERO
|
||
|
PARAMETER ( ZERO = 0.0E+0 )
|
||
|
* ..
|
||
|
* .. External Functions ..
|
||
|
LOGICAL LSAME
|
||
|
EXTERNAL LSAME
|
||
|
*
|
||
|
* .. External Subroutines ..
|
||
|
EXTERNAL XERBLA
|
||
|
* .. Local Scalars ..
|
||
|
LOGICAL UPPER, CONVERT
|
||
|
INTEGER I, IP, J
|
||
|
REAL TEMP
|
||
|
* ..
|
||
|
* .. Executable Statements ..
|
||
|
*
|
||
|
INFO = 0
|
||
|
UPPER = LSAME( UPLO, 'U' )
|
||
|
CONVERT = LSAME( WAY, 'C' )
|
||
|
IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
|
||
|
INFO = -1
|
||
|
ELSE IF( .NOT.CONVERT .AND. .NOT.LSAME( WAY, 'R' ) ) THEN
|
||
|
INFO = -2
|
||
|
ELSE IF( N.LT.0 ) THEN
|
||
|
INFO = -3
|
||
|
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
|
||
|
INFO = -5
|
||
|
|
||
|
END IF
|
||
|
IF( INFO.NE.0 ) THEN
|
||
|
CALL XERBLA( 'SSYCONV', -INFO )
|
||
|
RETURN
|
||
|
END IF
|
||
|
*
|
||
|
* Quick return if possible
|
||
|
*
|
||
|
IF( N.EQ.0 )
|
||
|
$ RETURN
|
||
|
*
|
||
|
IF( UPPER ) THEN
|
||
|
*
|
||
|
* A is UPPER
|
||
|
*
|
||
|
* Convert A (A is upper)
|
||
|
*
|
||
|
* Convert VALUE
|
||
|
*
|
||
|
IF ( CONVERT ) THEN
|
||
|
I=N
|
||
|
E(1)=ZERO
|
||
|
DO WHILE ( I .GT. 1 )
|
||
|
IF( IPIV(I) .LT. 0 ) THEN
|
||
|
E(I)=A(I-1,I)
|
||
|
E(I-1)=ZERO
|
||
|
A(I-1,I)=ZERO
|
||
|
I=I-1
|
||
|
ELSE
|
||
|
E(I)=ZERO
|
||
|
ENDIF
|
||
|
I=I-1
|
||
|
END DO
|
||
|
*
|
||
|
* Convert PERMUTATIONS
|
||
|
*
|
||
|
I=N
|
||
|
DO WHILE ( I .GE. 1 )
|
||
|
IF( IPIV(I) .GT. 0) THEN
|
||
|
IP=IPIV(I)
|
||
|
IF( I .LT. N) THEN
|
||
|
DO 12 J= I+1,N
|
||
|
TEMP=A(IP,J)
|
||
|
A(IP,J)=A(I,J)
|
||
|
A(I,J)=TEMP
|
||
|
12 CONTINUE
|
||
|
ENDIF
|
||
|
ELSE
|
||
|
IP=-IPIV(I)
|
||
|
IF( I .LT. N) THEN
|
||
|
DO 13 J= I+1,N
|
||
|
TEMP=A(IP,J)
|
||
|
A(IP,J)=A(I-1,J)
|
||
|
A(I-1,J)=TEMP
|
||
|
13 CONTINUE
|
||
|
ENDIF
|
||
|
I=I-1
|
||
|
ENDIF
|
||
|
I=I-1
|
||
|
END DO
|
||
|
|
||
|
ELSE
|
||
|
*
|
||
|
* Revert A (A is upper)
|
||
|
*
|
||
|
*
|
||
|
* Revert PERMUTATIONS
|
||
|
*
|
||
|
I=1
|
||
|
DO WHILE ( I .LE. N )
|
||
|
IF( IPIV(I) .GT. 0 ) THEN
|
||
|
IP=IPIV(I)
|
||
|
IF( I .LT. N) THEN
|
||
|
DO J= I+1,N
|
||
|
TEMP=A(IP,J)
|
||
|
A(IP,J)=A(I,J)
|
||
|
A(I,J)=TEMP
|
||
|
END DO
|
||
|
ENDIF
|
||
|
ELSE
|
||
|
IP=-IPIV(I)
|
||
|
I=I+1
|
||
|
IF( I .LT. N) THEN
|
||
|
DO J= I+1,N
|
||
|
TEMP=A(IP,J)
|
||
|
A(IP,J)=A(I-1,J)
|
||
|
A(I-1,J)=TEMP
|
||
|
END DO
|
||
|
ENDIF
|
||
|
ENDIF
|
||
|
I=I+1
|
||
|
END DO
|
||
|
*
|
||
|
* Revert VALUE
|
||
|
*
|
||
|
I=N
|
||
|
DO WHILE ( I .GT. 1 )
|
||
|
IF( IPIV(I) .LT. 0 ) THEN
|
||
|
A(I-1,I)=E(I)
|
||
|
I=I-1
|
||
|
ENDIF
|
||
|
I=I-1
|
||
|
END DO
|
||
|
END IF
|
||
|
ELSE
|
||
|
*
|
||
|
* A is LOWER
|
||
|
*
|
||
|
IF ( CONVERT ) THEN
|
||
|
*
|
||
|
* Convert A (A is lower)
|
||
|
*
|
||
|
*
|
||
|
* Convert VALUE
|
||
|
*
|
||
|
I=1
|
||
|
E(N)=ZERO
|
||
|
DO WHILE ( I .LE. N )
|
||
|
IF( I.LT.N .AND. IPIV(I) .LT. 0 ) THEN
|
||
|
E(I)=A(I+1,I)
|
||
|
E(I+1)=ZERO
|
||
|
A(I+1,I)=ZERO
|
||
|
I=I+1
|
||
|
ELSE
|
||
|
E(I)=ZERO
|
||
|
ENDIF
|
||
|
I=I+1
|
||
|
END DO
|
||
|
*
|
||
|
* Convert PERMUTATIONS
|
||
|
*
|
||
|
I=1
|
||
|
DO WHILE ( I .LE. N )
|
||
|
IF( IPIV(I) .GT. 0 ) THEN
|
||
|
IP=IPIV(I)
|
||
|
IF (I .GT. 1) THEN
|
||
|
DO 22 J= 1,I-1
|
||
|
TEMP=A(IP,J)
|
||
|
A(IP,J)=A(I,J)
|
||
|
A(I,J)=TEMP
|
||
|
22 CONTINUE
|
||
|
ENDIF
|
||
|
ELSE
|
||
|
IP=-IPIV(I)
|
||
|
IF (I .GT. 1) THEN
|
||
|
DO 23 J= 1,I-1
|
||
|
TEMP=A(IP,J)
|
||
|
A(IP,J)=A(I+1,J)
|
||
|
A(I+1,J)=TEMP
|
||
|
23 CONTINUE
|
||
|
ENDIF
|
||
|
I=I+1
|
||
|
ENDIF
|
||
|
I=I+1
|
||
|
END DO
|
||
|
ELSE
|
||
|
*
|
||
|
* Revert A (A is lower)
|
||
|
*
|
||
|
*
|
||
|
* Revert PERMUTATIONS
|
||
|
*
|
||
|
I=N
|
||
|
DO WHILE ( I .GE. 1 )
|
||
|
IF( IPIV(I) .GT. 0 ) THEN
|
||
|
IP=IPIV(I)
|
||
|
IF (I .GT. 1) THEN
|
||
|
DO J= 1,I-1
|
||
|
TEMP=A(I,J)
|
||
|
A(I,J)=A(IP,J)
|
||
|
A(IP,J)=TEMP
|
||
|
END DO
|
||
|
ENDIF
|
||
|
ELSE
|
||
|
IP=-IPIV(I)
|
||
|
I=I-1
|
||
|
IF (I .GT. 1) THEN
|
||
|
DO J= 1,I-1
|
||
|
TEMP=A(I+1,J)
|
||
|
A(I+1,J)=A(IP,J)
|
||
|
A(IP,J)=TEMP
|
||
|
END DO
|
||
|
ENDIF
|
||
|
ENDIF
|
||
|
I=I-1
|
||
|
END DO
|
||
|
*
|
||
|
* Revert VALUE
|
||
|
*
|
||
|
I=1
|
||
|
DO WHILE ( I .LE. N-1 )
|
||
|
IF( IPIV(I) .LT. 0 ) THEN
|
||
|
A(I+1,I)=E(I)
|
||
|
I=I+1
|
||
|
ENDIF
|
||
|
I=I+1
|
||
|
END DO
|
||
|
END IF
|
||
|
END IF
|
||
|
|
||
|
RETURN
|
||
|
*
|
||
|
* End of SSYCONV
|
||
|
*
|
||
|
END
|