You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
463 lines
15 KiB
463 lines
15 KiB
2 years ago
|
*> \brief \b SSYGVX
|
||
|
*
|
||
|
* =========== DOCUMENTATION ===========
|
||
|
*
|
||
|
* Online html documentation available at
|
||
|
* http://www.netlib.org/lapack/explore-html/
|
||
|
*
|
||
|
*> \htmlonly
|
||
|
*> Download SSYGVX + dependencies
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ssygvx.f">
|
||
|
*> [TGZ]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ssygvx.f">
|
||
|
*> [ZIP]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ssygvx.f">
|
||
|
*> [TXT]</a>
|
||
|
*> \endhtmlonly
|
||
|
*
|
||
|
* Definition:
|
||
|
* ===========
|
||
|
*
|
||
|
* SUBROUTINE SSYGVX( ITYPE, JOBZ, RANGE, UPLO, N, A, LDA, B, LDB,
|
||
|
* VL, VU, IL, IU, ABSTOL, M, W, Z, LDZ, WORK,
|
||
|
* LWORK, IWORK, IFAIL, INFO )
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
* CHARACTER JOBZ, RANGE, UPLO
|
||
|
* INTEGER IL, INFO, ITYPE, IU, LDA, LDB, LDZ, LWORK, M, N
|
||
|
* REAL ABSTOL, VL, VU
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
* INTEGER IFAIL( * ), IWORK( * )
|
||
|
* REAL A( LDA, * ), B( LDB, * ), W( * ), WORK( * ),
|
||
|
* $ Z( LDZ, * )
|
||
|
* ..
|
||
|
*
|
||
|
*
|
||
|
*> \par Purpose:
|
||
|
* =============
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*> SSYGVX computes selected eigenvalues, and optionally, eigenvectors
|
||
|
*> of a real generalized symmetric-definite eigenproblem, of the form
|
||
|
*> A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x. Here A
|
||
|
*> and B are assumed to be symmetric and B is also positive definite.
|
||
|
*> Eigenvalues and eigenvectors can be selected by specifying either a
|
||
|
*> range of values or a range of indices for the desired eigenvalues.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Arguments:
|
||
|
* ==========
|
||
|
*
|
||
|
*> \param[in] ITYPE
|
||
|
*> \verbatim
|
||
|
*> ITYPE is INTEGER
|
||
|
*> Specifies the problem type to be solved:
|
||
|
*> = 1: A*x = (lambda)*B*x
|
||
|
*> = 2: A*B*x = (lambda)*x
|
||
|
*> = 3: B*A*x = (lambda)*x
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] JOBZ
|
||
|
*> \verbatim
|
||
|
*> JOBZ is CHARACTER*1
|
||
|
*> = 'N': Compute eigenvalues only;
|
||
|
*> = 'V': Compute eigenvalues and eigenvectors.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] RANGE
|
||
|
*> \verbatim
|
||
|
*> RANGE is CHARACTER*1
|
||
|
*> = 'A': all eigenvalues will be found.
|
||
|
*> = 'V': all eigenvalues in the half-open interval (VL,VU]
|
||
|
*> will be found.
|
||
|
*> = 'I': the IL-th through IU-th eigenvalues will be found.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] UPLO
|
||
|
*> \verbatim
|
||
|
*> UPLO is CHARACTER*1
|
||
|
*> = 'U': Upper triangle of A and B are stored;
|
||
|
*> = 'L': Lower triangle of A and B are stored.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] N
|
||
|
*> \verbatim
|
||
|
*> N is INTEGER
|
||
|
*> The order of the matrix pencil (A,B). N >= 0.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] A
|
||
|
*> \verbatim
|
||
|
*> A is REAL array, dimension (LDA, N)
|
||
|
*> On entry, the symmetric matrix A. If UPLO = 'U', the
|
||
|
*> leading N-by-N upper triangular part of A contains the
|
||
|
*> upper triangular part of the matrix A. If UPLO = 'L',
|
||
|
*> the leading N-by-N lower triangular part of A contains
|
||
|
*> the lower triangular part of the matrix A.
|
||
|
*>
|
||
|
*> On exit, the lower triangle (if UPLO='L') or the upper
|
||
|
*> triangle (if UPLO='U') of A, including the diagonal, is
|
||
|
*> destroyed.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDA
|
||
|
*> \verbatim
|
||
|
*> LDA is INTEGER
|
||
|
*> The leading dimension of the array A. LDA >= max(1,N).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] B
|
||
|
*> \verbatim
|
||
|
*> B is REAL array, dimension (LDB, N)
|
||
|
*> On entry, the symmetric matrix B. If UPLO = 'U', the
|
||
|
*> leading N-by-N upper triangular part of B contains the
|
||
|
*> upper triangular part of the matrix B. If UPLO = 'L',
|
||
|
*> the leading N-by-N lower triangular part of B contains
|
||
|
*> the lower triangular part of the matrix B.
|
||
|
*>
|
||
|
*> On exit, if INFO <= N, the part of B containing the matrix is
|
||
|
*> overwritten by the triangular factor U or L from the Cholesky
|
||
|
*> factorization B = U**T*U or B = L*L**T.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDB
|
||
|
*> \verbatim
|
||
|
*> LDB is INTEGER
|
||
|
*> The leading dimension of the array B. LDB >= max(1,N).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] VL
|
||
|
*> \verbatim
|
||
|
*> VL is REAL
|
||
|
*> If RANGE='V', the lower bound of the interval to
|
||
|
*> be searched for eigenvalues. VL < VU.
|
||
|
*> Not referenced if RANGE = 'A' or 'I'.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] VU
|
||
|
*> \verbatim
|
||
|
*> VU is REAL
|
||
|
*> If RANGE='V', the upper bound of the interval to
|
||
|
*> be searched for eigenvalues. VL < VU.
|
||
|
*> Not referenced if RANGE = 'A' or 'I'.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] IL
|
||
|
*> \verbatim
|
||
|
*> IL is INTEGER
|
||
|
*> If RANGE='I', the index of the
|
||
|
*> smallest eigenvalue to be returned.
|
||
|
*> 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
|
||
|
*> Not referenced if RANGE = 'A' or 'V'.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] IU
|
||
|
*> \verbatim
|
||
|
*> IU is INTEGER
|
||
|
*> If RANGE='I', the index of the
|
||
|
*> largest eigenvalue to be returned.
|
||
|
*> 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
|
||
|
*> Not referenced if RANGE = 'A' or 'V'.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] ABSTOL
|
||
|
*> \verbatim
|
||
|
*> ABSTOL is REAL
|
||
|
*> The absolute error tolerance for the eigenvalues.
|
||
|
*> An approximate eigenvalue is accepted as converged
|
||
|
*> when it is determined to lie in an interval [a,b]
|
||
|
*> of width less than or equal to
|
||
|
*>
|
||
|
*> ABSTOL + EPS * max( |a|,|b| ) ,
|
||
|
*>
|
||
|
*> where EPS is the machine precision. If ABSTOL is less than
|
||
|
*> or equal to zero, then EPS*|T| will be used in its place,
|
||
|
*> where |T| is the 1-norm of the tridiagonal matrix obtained
|
||
|
*> by reducing C to tridiagonal form, where C is the symmetric
|
||
|
*> matrix of the standard symmetric problem to which the
|
||
|
*> generalized problem is transformed.
|
||
|
*>
|
||
|
*> Eigenvalues will be computed most accurately when ABSTOL is
|
||
|
*> set to twice the underflow threshold 2*DLAMCH('S'), not zero.
|
||
|
*> If this routine returns with INFO>0, indicating that some
|
||
|
*> eigenvectors did not converge, try setting ABSTOL to
|
||
|
*> 2*SLAMCH('S').
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] M
|
||
|
*> \verbatim
|
||
|
*> M is INTEGER
|
||
|
*> The total number of eigenvalues found. 0 <= M <= N.
|
||
|
*> If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] W
|
||
|
*> \verbatim
|
||
|
*> W is REAL array, dimension (N)
|
||
|
*> On normal exit, the first M elements contain the selected
|
||
|
*> eigenvalues in ascending order.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] Z
|
||
|
*> \verbatim
|
||
|
*> Z is REAL array, dimension (LDZ, max(1,M))
|
||
|
*> If JOBZ = 'N', then Z is not referenced.
|
||
|
*> If JOBZ = 'V', then if INFO = 0, the first M columns of Z
|
||
|
*> contain the orthonormal eigenvectors of the matrix A
|
||
|
*> corresponding to the selected eigenvalues, with the i-th
|
||
|
*> column of Z holding the eigenvector associated with W(i).
|
||
|
*> The eigenvectors are normalized as follows:
|
||
|
*> if ITYPE = 1 or 2, Z**T*B*Z = I;
|
||
|
*> if ITYPE = 3, Z**T*inv(B)*Z = I.
|
||
|
*>
|
||
|
*> If an eigenvector fails to converge, then that column of Z
|
||
|
*> contains the latest approximation to the eigenvector, and the
|
||
|
*> index of the eigenvector is returned in IFAIL.
|
||
|
*> Note: the user must ensure that at least max(1,M) columns are
|
||
|
*> supplied in the array Z; if RANGE = 'V', the exact value of M
|
||
|
*> is not known in advance and an upper bound must be used.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDZ
|
||
|
*> \verbatim
|
||
|
*> LDZ is INTEGER
|
||
|
*> The leading dimension of the array Z. LDZ >= 1, and if
|
||
|
*> JOBZ = 'V', LDZ >= max(1,N).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] WORK
|
||
|
*> \verbatim
|
||
|
*> WORK is REAL array, dimension (MAX(1,LWORK))
|
||
|
*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LWORK
|
||
|
*> \verbatim
|
||
|
*> LWORK is INTEGER
|
||
|
*> The length of the array WORK. LWORK >= max(1,8*N).
|
||
|
*> For optimal efficiency, LWORK >= (NB+3)*N,
|
||
|
*> where NB is the blocksize for SSYTRD returned by ILAENV.
|
||
|
*>
|
||
|
*> If LWORK = -1, then a workspace query is assumed; the routine
|
||
|
*> only calculates the optimal size of the WORK array, returns
|
||
|
*> this value as the first entry of the WORK array, and no error
|
||
|
*> message related to LWORK is issued by XERBLA.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] IWORK
|
||
|
*> \verbatim
|
||
|
*> IWORK is INTEGER array, dimension (5*N)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] IFAIL
|
||
|
*> \verbatim
|
||
|
*> IFAIL is INTEGER array, dimension (N)
|
||
|
*> If JOBZ = 'V', then if INFO = 0, the first M elements of
|
||
|
*> IFAIL are zero. If INFO > 0, then IFAIL contains the
|
||
|
*> indices of the eigenvectors that failed to converge.
|
||
|
*> If JOBZ = 'N', then IFAIL is not referenced.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] INFO
|
||
|
*> \verbatim
|
||
|
*> INFO is INTEGER
|
||
|
*> = 0: successful exit
|
||
|
*> < 0: if INFO = -i, the i-th argument had an illegal value
|
||
|
*> > 0: SPOTRF or SSYEVX returned an error code:
|
||
|
*> <= N: if INFO = i, SSYEVX failed to converge;
|
||
|
*> i eigenvectors failed to converge. Their indices
|
||
|
*> are stored in array IFAIL.
|
||
|
*> > N: if INFO = N + i, for 1 <= i <= N, then the leading
|
||
|
*> principal minor of order i of B is not positive.
|
||
|
*> The factorization of B could not be completed and
|
||
|
*> no eigenvalues or eigenvectors were computed.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Authors:
|
||
|
* ========
|
||
|
*
|
||
|
*> \author Univ. of Tennessee
|
||
|
*> \author Univ. of California Berkeley
|
||
|
*> \author Univ. of Colorado Denver
|
||
|
*> \author NAG Ltd.
|
||
|
*
|
||
|
*> \ingroup realSYeigen
|
||
|
*
|
||
|
*> \par Contributors:
|
||
|
* ==================
|
||
|
*>
|
||
|
*> Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
|
||
|
*
|
||
|
* =====================================================================
|
||
|
SUBROUTINE SSYGVX( ITYPE, JOBZ, RANGE, UPLO, N, A, LDA, B, LDB,
|
||
|
$ VL, VU, IL, IU, ABSTOL, M, W, Z, LDZ, WORK,
|
||
|
$ LWORK, IWORK, IFAIL, INFO )
|
||
|
*
|
||
|
* -- LAPACK driver routine --
|
||
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
CHARACTER JOBZ, RANGE, UPLO
|
||
|
INTEGER IL, INFO, ITYPE, IU, LDA, LDB, LDZ, LWORK, M, N
|
||
|
REAL ABSTOL, VL, VU
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
INTEGER IFAIL( * ), IWORK( * )
|
||
|
REAL A( LDA, * ), B( LDB, * ), W( * ), WORK( * ),
|
||
|
$ Z( LDZ, * )
|
||
|
* ..
|
||
|
*
|
||
|
* =====================================================================
|
||
|
*
|
||
|
* .. Parameters ..
|
||
|
REAL ONE
|
||
|
PARAMETER ( ONE = 1.0E+0 )
|
||
|
* ..
|
||
|
* .. Local Scalars ..
|
||
|
LOGICAL ALLEIG, INDEIG, LQUERY, UPPER, VALEIG, WANTZ
|
||
|
CHARACTER TRANS
|
||
|
INTEGER LWKMIN, LWKOPT, NB
|
||
|
* ..
|
||
|
* .. External Functions ..
|
||
|
LOGICAL LSAME
|
||
|
INTEGER ILAENV
|
||
|
EXTERNAL ILAENV, LSAME
|
||
|
* ..
|
||
|
* .. External Subroutines ..
|
||
|
EXTERNAL SPOTRF, SSYEVX, SSYGST, STRMM, STRSM, XERBLA
|
||
|
* ..
|
||
|
* .. Intrinsic Functions ..
|
||
|
INTRINSIC MAX, MIN
|
||
|
* ..
|
||
|
* .. Executable Statements ..
|
||
|
*
|
||
|
* Test the input parameters.
|
||
|
*
|
||
|
UPPER = LSAME( UPLO, 'U' )
|
||
|
WANTZ = LSAME( JOBZ, 'V' )
|
||
|
ALLEIG = LSAME( RANGE, 'A' )
|
||
|
VALEIG = LSAME( RANGE, 'V' )
|
||
|
INDEIG = LSAME( RANGE, 'I' )
|
||
|
LQUERY = ( LWORK.EQ.-1 )
|
||
|
*
|
||
|
INFO = 0
|
||
|
IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
|
||
|
INFO = -1
|
||
|
ELSE IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
|
||
|
INFO = -2
|
||
|
ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
|
||
|
INFO = -3
|
||
|
ELSE IF( .NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN
|
||
|
INFO = -4
|
||
|
ELSE IF( N.LT.0 ) THEN
|
||
|
INFO = -5
|
||
|
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
|
||
|
INFO = -7
|
||
|
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
|
||
|
INFO = -9
|
||
|
ELSE
|
||
|
IF( VALEIG ) THEN
|
||
|
IF( N.GT.0 .AND. VU.LE.VL )
|
||
|
$ INFO = -11
|
||
|
ELSE IF( INDEIG ) THEN
|
||
|
IF( IL.LT.1 .OR. IL.GT.MAX( 1, N ) ) THEN
|
||
|
INFO = -12
|
||
|
ELSE IF( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
|
||
|
INFO = -13
|
||
|
END IF
|
||
|
END IF
|
||
|
END IF
|
||
|
IF (INFO.EQ.0) THEN
|
||
|
IF (LDZ.LT.1 .OR. (WANTZ .AND. LDZ.LT.N)) THEN
|
||
|
INFO = -18
|
||
|
END IF
|
||
|
END IF
|
||
|
*
|
||
|
IF( INFO.EQ.0 ) THEN
|
||
|
LWKMIN = MAX( 1, 8*N )
|
||
|
NB = ILAENV( 1, 'SSYTRD', UPLO, N, -1, -1, -1 )
|
||
|
LWKOPT = MAX( LWKMIN, ( NB + 3 )*N )
|
||
|
WORK( 1 ) = LWKOPT
|
||
|
*
|
||
|
IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY ) THEN
|
||
|
INFO = -20
|
||
|
END IF
|
||
|
END IF
|
||
|
*
|
||
|
IF( INFO.NE.0 ) THEN
|
||
|
CALL XERBLA( 'SSYGVX', -INFO )
|
||
|
RETURN
|
||
|
ELSE IF( LQUERY ) THEN
|
||
|
RETURN
|
||
|
END IF
|
||
|
*
|
||
|
* Quick return if possible
|
||
|
*
|
||
|
M = 0
|
||
|
IF( N.EQ.0 ) THEN
|
||
|
RETURN
|
||
|
END IF
|
||
|
*
|
||
|
* Form a Cholesky factorization of B.
|
||
|
*
|
||
|
CALL SPOTRF( UPLO, N, B, LDB, INFO )
|
||
|
IF( INFO.NE.0 ) THEN
|
||
|
INFO = N + INFO
|
||
|
RETURN
|
||
|
END IF
|
||
|
*
|
||
|
* Transform problem to standard eigenvalue problem and solve.
|
||
|
*
|
||
|
CALL SSYGST( ITYPE, UPLO, N, A, LDA, B, LDB, INFO )
|
||
|
CALL SSYEVX( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, IL, IU, ABSTOL,
|
||
|
$ M, W, Z, LDZ, WORK, LWORK, IWORK, IFAIL, INFO )
|
||
|
*
|
||
|
IF( WANTZ ) THEN
|
||
|
*
|
||
|
* Backtransform eigenvectors to the original problem.
|
||
|
*
|
||
|
IF( INFO.GT.0 )
|
||
|
$ M = INFO - 1
|
||
|
IF( ITYPE.EQ.1 .OR. ITYPE.EQ.2 ) THEN
|
||
|
*
|
||
|
* For A*x=(lambda)*B*x and A*B*x=(lambda)*x;
|
||
|
* backtransform eigenvectors: x = inv(L)**T*y or inv(U)*y
|
||
|
*
|
||
|
IF( UPPER ) THEN
|
||
|
TRANS = 'N'
|
||
|
ELSE
|
||
|
TRANS = 'T'
|
||
|
END IF
|
||
|
*
|
||
|
CALL STRSM( 'Left', UPLO, TRANS, 'Non-unit', N, M, ONE, B,
|
||
|
$ LDB, Z, LDZ )
|
||
|
*
|
||
|
ELSE IF( ITYPE.EQ.3 ) THEN
|
||
|
*
|
||
|
* For B*A*x=(lambda)*x;
|
||
|
* backtransform eigenvectors: x = L*y or U**T*y
|
||
|
*
|
||
|
IF( UPPER ) THEN
|
||
|
TRANS = 'T'
|
||
|
ELSE
|
||
|
TRANS = 'N'
|
||
|
END IF
|
||
|
*
|
||
|
CALL STRMM( 'Left', UPLO, TRANS, 'Non-unit', N, M, ONE, B,
|
||
|
$ LDB, Z, LDZ )
|
||
|
END IF
|
||
|
END IF
|
||
|
*
|
||
|
* Set WORK(1) to optimal workspace size.
|
||
|
*
|
||
|
WORK( 1 ) = LWKOPT
|
||
|
*
|
||
|
RETURN
|
||
|
*
|
||
|
* End of SSYGVX
|
||
|
*
|
||
|
END
|