You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
473 lines
14 KiB
473 lines
14 KiB
2 years ago
|
*> \brief \b ZGBRFS
|
||
|
*
|
||
|
* =========== DOCUMENTATION ===========
|
||
|
*
|
||
|
* Online html documentation available at
|
||
|
* http://www.netlib.org/lapack/explore-html/
|
||
|
*
|
||
|
*> \htmlonly
|
||
|
*> Download ZGBRFS + dependencies
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgbrfs.f">
|
||
|
*> [TGZ]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgbrfs.f">
|
||
|
*> [ZIP]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgbrfs.f">
|
||
|
*> [TXT]</a>
|
||
|
*> \endhtmlonly
|
||
|
*
|
||
|
* Definition:
|
||
|
* ===========
|
||
|
*
|
||
|
* SUBROUTINE ZGBRFS( TRANS, N, KL, KU, NRHS, AB, LDAB, AFB, LDAFB,
|
||
|
* IPIV, B, LDB, X, LDX, FERR, BERR, WORK, RWORK,
|
||
|
* INFO )
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
* CHARACTER TRANS
|
||
|
* INTEGER INFO, KL, KU, LDAB, LDAFB, LDB, LDX, N, NRHS
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
* INTEGER IPIV( * )
|
||
|
* DOUBLE PRECISION BERR( * ), FERR( * ), RWORK( * )
|
||
|
* COMPLEX*16 AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ),
|
||
|
* $ WORK( * ), X( LDX, * )
|
||
|
* ..
|
||
|
*
|
||
|
*
|
||
|
*> \par Purpose:
|
||
|
* =============
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*> ZGBRFS improves the computed solution to a system of linear
|
||
|
*> equations when the coefficient matrix is banded, and provides
|
||
|
*> error bounds and backward error estimates for the solution.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Arguments:
|
||
|
* ==========
|
||
|
*
|
||
|
*> \param[in] TRANS
|
||
|
*> \verbatim
|
||
|
*> TRANS is CHARACTER*1
|
||
|
*> Specifies the form of the system of equations:
|
||
|
*> = 'N': A * X = B (No transpose)
|
||
|
*> = 'T': A**T * X = B (Transpose)
|
||
|
*> = 'C': A**H * X = B (Conjugate transpose)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] N
|
||
|
*> \verbatim
|
||
|
*> N is INTEGER
|
||
|
*> The order of the matrix A. N >= 0.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] KL
|
||
|
*> \verbatim
|
||
|
*> KL is INTEGER
|
||
|
*> The number of subdiagonals within the band of A. KL >= 0.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] KU
|
||
|
*> \verbatim
|
||
|
*> KU is INTEGER
|
||
|
*> The number of superdiagonals within the band of A. KU >= 0.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] NRHS
|
||
|
*> \verbatim
|
||
|
*> NRHS is INTEGER
|
||
|
*> The number of right hand sides, i.e., the number of columns
|
||
|
*> of the matrices B and X. NRHS >= 0.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] AB
|
||
|
*> \verbatim
|
||
|
*> AB is COMPLEX*16 array, dimension (LDAB,N)
|
||
|
*> The original band matrix A, stored in rows 1 to KL+KU+1.
|
||
|
*> The j-th column of A is stored in the j-th column of the
|
||
|
*> array AB as follows:
|
||
|
*> AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(n,j+kl).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDAB
|
||
|
*> \verbatim
|
||
|
*> LDAB is INTEGER
|
||
|
*> The leading dimension of the array AB. LDAB >= KL+KU+1.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] AFB
|
||
|
*> \verbatim
|
||
|
*> AFB is COMPLEX*16 array, dimension (LDAFB,N)
|
||
|
*> Details of the LU factorization of the band matrix A, as
|
||
|
*> computed by ZGBTRF. U is stored as an upper triangular band
|
||
|
*> matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, and
|
||
|
*> the multipliers used during the factorization are stored in
|
||
|
*> rows KL+KU+2 to 2*KL+KU+1.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDAFB
|
||
|
*> \verbatim
|
||
|
*> LDAFB is INTEGER
|
||
|
*> The leading dimension of the array AFB. LDAFB >= 2*KL*KU+1.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] IPIV
|
||
|
*> \verbatim
|
||
|
*> IPIV is INTEGER array, dimension (N)
|
||
|
*> The pivot indices from ZGBTRF; for 1<=i<=N, row i of the
|
||
|
*> matrix was interchanged with row IPIV(i).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] B
|
||
|
*> \verbatim
|
||
|
*> B is COMPLEX*16 array, dimension (LDB,NRHS)
|
||
|
*> The right hand side matrix B.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDB
|
||
|
*> \verbatim
|
||
|
*> LDB is INTEGER
|
||
|
*> The leading dimension of the array B. LDB >= max(1,N).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] X
|
||
|
*> \verbatim
|
||
|
*> X is COMPLEX*16 array, dimension (LDX,NRHS)
|
||
|
*> On entry, the solution matrix X, as computed by ZGBTRS.
|
||
|
*> On exit, the improved solution matrix X.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDX
|
||
|
*> \verbatim
|
||
|
*> LDX is INTEGER
|
||
|
*> The leading dimension of the array X. LDX >= max(1,N).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] FERR
|
||
|
*> \verbatim
|
||
|
*> FERR is DOUBLE PRECISION array, dimension (NRHS)
|
||
|
*> The estimated forward error bound for each solution vector
|
||
|
*> X(j) (the j-th column of the solution matrix X).
|
||
|
*> If XTRUE is the true solution corresponding to X(j), FERR(j)
|
||
|
*> is an estimated upper bound for the magnitude of the largest
|
||
|
*> element in (X(j) - XTRUE) divided by the magnitude of the
|
||
|
*> largest element in X(j). The estimate is as reliable as
|
||
|
*> the estimate for RCOND, and is almost always a slight
|
||
|
*> overestimate of the true error.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] BERR
|
||
|
*> \verbatim
|
||
|
*> BERR is DOUBLE PRECISION array, dimension (NRHS)
|
||
|
*> The componentwise relative backward error of each solution
|
||
|
*> vector X(j) (i.e., the smallest relative change in
|
||
|
*> any element of A or B that makes X(j) an exact solution).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] WORK
|
||
|
*> \verbatim
|
||
|
*> WORK is COMPLEX*16 array, dimension (2*N)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] RWORK
|
||
|
*> \verbatim
|
||
|
*> RWORK is DOUBLE PRECISION array, dimension (N)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] INFO
|
||
|
*> \verbatim
|
||
|
*> INFO is INTEGER
|
||
|
*> = 0: successful exit
|
||
|
*> < 0: if INFO = -i, the i-th argument had an illegal value
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
*> \par Internal Parameters:
|
||
|
* =========================
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*> ITMAX is the maximum number of steps of iterative refinement.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Authors:
|
||
|
* ========
|
||
|
*
|
||
|
*> \author Univ. of Tennessee
|
||
|
*> \author Univ. of California Berkeley
|
||
|
*> \author Univ. of Colorado Denver
|
||
|
*> \author NAG Ltd.
|
||
|
*
|
||
|
*> \ingroup complex16GBcomputational
|
||
|
*
|
||
|
* =====================================================================
|
||
|
SUBROUTINE ZGBRFS( TRANS, N, KL, KU, NRHS, AB, LDAB, AFB, LDAFB,
|
||
|
$ IPIV, B, LDB, X, LDX, FERR, BERR, WORK, RWORK,
|
||
|
$ INFO )
|
||
|
*
|
||
|
* -- LAPACK computational routine --
|
||
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
CHARACTER TRANS
|
||
|
INTEGER INFO, KL, KU, LDAB, LDAFB, LDB, LDX, N, NRHS
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
INTEGER IPIV( * )
|
||
|
DOUBLE PRECISION BERR( * ), FERR( * ), RWORK( * )
|
||
|
COMPLEX*16 AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ),
|
||
|
$ WORK( * ), X( LDX, * )
|
||
|
* ..
|
||
|
*
|
||
|
* =====================================================================
|
||
|
*
|
||
|
* .. Parameters ..
|
||
|
INTEGER ITMAX
|
||
|
PARAMETER ( ITMAX = 5 )
|
||
|
DOUBLE PRECISION ZERO
|
||
|
PARAMETER ( ZERO = 0.0D+0 )
|
||
|
COMPLEX*16 CONE
|
||
|
PARAMETER ( CONE = ( 1.0D+0, 0.0D+0 ) )
|
||
|
DOUBLE PRECISION TWO
|
||
|
PARAMETER ( TWO = 2.0D+0 )
|
||
|
DOUBLE PRECISION THREE
|
||
|
PARAMETER ( THREE = 3.0D+0 )
|
||
|
* ..
|
||
|
* .. Local Scalars ..
|
||
|
LOGICAL NOTRAN
|
||
|
CHARACTER TRANSN, TRANST
|
||
|
INTEGER COUNT, I, J, K, KASE, KK, NZ
|
||
|
DOUBLE PRECISION EPS, LSTRES, S, SAFE1, SAFE2, SAFMIN, XK
|
||
|
COMPLEX*16 ZDUM
|
||
|
* ..
|
||
|
* .. Local Arrays ..
|
||
|
INTEGER ISAVE( 3 )
|
||
|
* ..
|
||
|
* .. External Subroutines ..
|
||
|
EXTERNAL XERBLA, ZAXPY, ZCOPY, ZGBMV, ZGBTRS, ZLACN2
|
||
|
* ..
|
||
|
* .. Intrinsic Functions ..
|
||
|
INTRINSIC ABS, DBLE, DIMAG, MAX, MIN
|
||
|
* ..
|
||
|
* .. External Functions ..
|
||
|
LOGICAL LSAME
|
||
|
DOUBLE PRECISION DLAMCH
|
||
|
EXTERNAL LSAME, DLAMCH
|
||
|
* ..
|
||
|
* .. Statement Functions ..
|
||
|
DOUBLE PRECISION CABS1
|
||
|
* ..
|
||
|
* .. Statement Function definitions ..
|
||
|
CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
|
||
|
* ..
|
||
|
* .. Executable Statements ..
|
||
|
*
|
||
|
* Test the input parameters.
|
||
|
*
|
||
|
INFO = 0
|
||
|
NOTRAN = LSAME( TRANS, 'N' )
|
||
|
IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
|
||
|
$ LSAME( TRANS, 'C' ) ) THEN
|
||
|
INFO = -1
|
||
|
ELSE IF( N.LT.0 ) THEN
|
||
|
INFO = -2
|
||
|
ELSE IF( KL.LT.0 ) THEN
|
||
|
INFO = -3
|
||
|
ELSE IF( KU.LT.0 ) THEN
|
||
|
INFO = -4
|
||
|
ELSE IF( NRHS.LT.0 ) THEN
|
||
|
INFO = -5
|
||
|
ELSE IF( LDAB.LT.KL+KU+1 ) THEN
|
||
|
INFO = -7
|
||
|
ELSE IF( LDAFB.LT.2*KL+KU+1 ) THEN
|
||
|
INFO = -9
|
||
|
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
|
||
|
INFO = -12
|
||
|
ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
|
||
|
INFO = -14
|
||
|
END IF
|
||
|
IF( INFO.NE.0 ) THEN
|
||
|
CALL XERBLA( 'ZGBRFS', -INFO )
|
||
|
RETURN
|
||
|
END IF
|
||
|
*
|
||
|
* Quick return if possible
|
||
|
*
|
||
|
IF( N.EQ.0 .OR. NRHS.EQ.0 ) THEN
|
||
|
DO 10 J = 1, NRHS
|
||
|
FERR( J ) = ZERO
|
||
|
BERR( J ) = ZERO
|
||
|
10 CONTINUE
|
||
|
RETURN
|
||
|
END IF
|
||
|
*
|
||
|
IF( NOTRAN ) THEN
|
||
|
TRANSN = 'N'
|
||
|
TRANST = 'C'
|
||
|
ELSE
|
||
|
TRANSN = 'C'
|
||
|
TRANST = 'N'
|
||
|
END IF
|
||
|
*
|
||
|
* NZ = maximum number of nonzero elements in each row of A, plus 1
|
||
|
*
|
||
|
NZ = MIN( KL+KU+2, N+1 )
|
||
|
EPS = DLAMCH( 'Epsilon' )
|
||
|
SAFMIN = DLAMCH( 'Safe minimum' )
|
||
|
SAFE1 = NZ*SAFMIN
|
||
|
SAFE2 = SAFE1 / EPS
|
||
|
*
|
||
|
* Do for each right hand side
|
||
|
*
|
||
|
DO 140 J = 1, NRHS
|
||
|
*
|
||
|
COUNT = 1
|
||
|
LSTRES = THREE
|
||
|
20 CONTINUE
|
||
|
*
|
||
|
* Loop until stopping criterion is satisfied.
|
||
|
*
|
||
|
* Compute residual R = B - op(A) * X,
|
||
|
* where op(A) = A, A**T, or A**H, depending on TRANS.
|
||
|
*
|
||
|
CALL ZCOPY( N, B( 1, J ), 1, WORK, 1 )
|
||
|
CALL ZGBMV( TRANS, N, N, KL, KU, -CONE, AB, LDAB, X( 1, J ), 1,
|
||
|
$ CONE, WORK, 1 )
|
||
|
*
|
||
|
* Compute componentwise relative backward error from formula
|
||
|
*
|
||
|
* max(i) ( abs(R(i)) / ( abs(op(A))*abs(X) + abs(B) )(i) )
|
||
|
*
|
||
|
* where abs(Z) is the componentwise absolute value of the matrix
|
||
|
* or vector Z. If the i-th component of the denominator is less
|
||
|
* than SAFE2, then SAFE1 is added to the i-th components of the
|
||
|
* numerator and denominator before dividing.
|
||
|
*
|
||
|
DO 30 I = 1, N
|
||
|
RWORK( I ) = CABS1( B( I, J ) )
|
||
|
30 CONTINUE
|
||
|
*
|
||
|
* Compute abs(op(A))*abs(X) + abs(B).
|
||
|
*
|
||
|
IF( NOTRAN ) THEN
|
||
|
DO 50 K = 1, N
|
||
|
KK = KU + 1 - K
|
||
|
XK = CABS1( X( K, J ) )
|
||
|
DO 40 I = MAX( 1, K-KU ), MIN( N, K+KL )
|
||
|
RWORK( I ) = RWORK( I ) + CABS1( AB( KK+I, K ) )*XK
|
||
|
40 CONTINUE
|
||
|
50 CONTINUE
|
||
|
ELSE
|
||
|
DO 70 K = 1, N
|
||
|
S = ZERO
|
||
|
KK = KU + 1 - K
|
||
|
DO 60 I = MAX( 1, K-KU ), MIN( N, K+KL )
|
||
|
S = S + CABS1( AB( KK+I, K ) )*CABS1( X( I, J ) )
|
||
|
60 CONTINUE
|
||
|
RWORK( K ) = RWORK( K ) + S
|
||
|
70 CONTINUE
|
||
|
END IF
|
||
|
S = ZERO
|
||
|
DO 80 I = 1, N
|
||
|
IF( RWORK( I ).GT.SAFE2 ) THEN
|
||
|
S = MAX( S, CABS1( WORK( I ) ) / RWORK( I ) )
|
||
|
ELSE
|
||
|
S = MAX( S, ( CABS1( WORK( I ) )+SAFE1 ) /
|
||
|
$ ( RWORK( I )+SAFE1 ) )
|
||
|
END IF
|
||
|
80 CONTINUE
|
||
|
BERR( J ) = S
|
||
|
*
|
||
|
* Test stopping criterion. Continue iterating if
|
||
|
* 1) The residual BERR(J) is larger than machine epsilon, and
|
||
|
* 2) BERR(J) decreased by at least a factor of 2 during the
|
||
|
* last iteration, and
|
||
|
* 3) At most ITMAX iterations tried.
|
||
|
*
|
||
|
IF( BERR( J ).GT.EPS .AND. TWO*BERR( J ).LE.LSTRES .AND.
|
||
|
$ COUNT.LE.ITMAX ) THEN
|
||
|
*
|
||
|
* Update solution and try again.
|
||
|
*
|
||
|
CALL ZGBTRS( TRANS, N, KL, KU, 1, AFB, LDAFB, IPIV, WORK, N,
|
||
|
$ INFO )
|
||
|
CALL ZAXPY( N, CONE, WORK, 1, X( 1, J ), 1 )
|
||
|
LSTRES = BERR( J )
|
||
|
COUNT = COUNT + 1
|
||
|
GO TO 20
|
||
|
END IF
|
||
|
*
|
||
|
* Bound error from formula
|
||
|
*
|
||
|
* norm(X - XTRUE) / norm(X) .le. FERR =
|
||
|
* norm( abs(inv(op(A)))*
|
||
|
* ( abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) ))) / norm(X)
|
||
|
*
|
||
|
* where
|
||
|
* norm(Z) is the magnitude of the largest component of Z
|
||
|
* inv(op(A)) is the inverse of op(A)
|
||
|
* abs(Z) is the componentwise absolute value of the matrix or
|
||
|
* vector Z
|
||
|
* NZ is the maximum number of nonzeros in any row of A, plus 1
|
||
|
* EPS is machine epsilon
|
||
|
*
|
||
|
* The i-th component of abs(R)+NZ*EPS*(abs(op(A))*abs(X)+abs(B))
|
||
|
* is incremented by SAFE1 if the i-th component of
|
||
|
* abs(op(A))*abs(X) + abs(B) is less than SAFE2.
|
||
|
*
|
||
|
* Use ZLACN2 to estimate the infinity-norm of the matrix
|
||
|
* inv(op(A)) * diag(W),
|
||
|
* where W = abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) )))
|
||
|
*
|
||
|
DO 90 I = 1, N
|
||
|
IF( RWORK( I ).GT.SAFE2 ) THEN
|
||
|
RWORK( I ) = CABS1( WORK( I ) ) + NZ*EPS*RWORK( I )
|
||
|
ELSE
|
||
|
RWORK( I ) = CABS1( WORK( I ) ) + NZ*EPS*RWORK( I ) +
|
||
|
$ SAFE1
|
||
|
END IF
|
||
|
90 CONTINUE
|
||
|
*
|
||
|
KASE = 0
|
||
|
100 CONTINUE
|
||
|
CALL ZLACN2( N, WORK( N+1 ), WORK, FERR( J ), KASE, ISAVE )
|
||
|
IF( KASE.NE.0 ) THEN
|
||
|
IF( KASE.EQ.1 ) THEN
|
||
|
*
|
||
|
* Multiply by diag(W)*inv(op(A)**H).
|
||
|
*
|
||
|
CALL ZGBTRS( TRANST, N, KL, KU, 1, AFB, LDAFB, IPIV,
|
||
|
$ WORK, N, INFO )
|
||
|
DO 110 I = 1, N
|
||
|
WORK( I ) = RWORK( I )*WORK( I )
|
||
|
110 CONTINUE
|
||
|
ELSE
|
||
|
*
|
||
|
* Multiply by inv(op(A))*diag(W).
|
||
|
*
|
||
|
DO 120 I = 1, N
|
||
|
WORK( I ) = RWORK( I )*WORK( I )
|
||
|
120 CONTINUE
|
||
|
CALL ZGBTRS( TRANSN, N, KL, KU, 1, AFB, LDAFB, IPIV,
|
||
|
$ WORK, N, INFO )
|
||
|
END IF
|
||
|
GO TO 100
|
||
|
END IF
|
||
|
*
|
||
|
* Normalize error.
|
||
|
*
|
||
|
LSTRES = ZERO
|
||
|
DO 130 I = 1, N
|
||
|
LSTRES = MAX( LSTRES, CABS1( X( I, J ) ) )
|
||
|
130 CONTINUE
|
||
|
IF( LSTRES.NE.ZERO )
|
||
|
$ FERR( J ) = FERR( J ) / LSTRES
|
||
|
*
|
||
|
140 CONTINUE
|
||
|
*
|
||
|
RETURN
|
||
|
*
|
||
|
* End of ZGBRFS
|
||
|
*
|
||
|
END
|