You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
761 lines
29 KiB
761 lines
29 KiB
2 years ago
|
*> \brief \b ZGBRFSX
|
||
|
*
|
||
|
* =========== DOCUMENTATION ===========
|
||
|
*
|
||
|
* Online html documentation available at
|
||
|
* http://www.netlib.org/lapack/explore-html/
|
||
|
*
|
||
|
*> \htmlonly
|
||
|
*> Download ZGBRFSX + dependencies
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgbrfsx.f">
|
||
|
*> [TGZ]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgbrfsx.f">
|
||
|
*> [ZIP]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgbrfsx.f">
|
||
|
*> [TXT]</a>
|
||
|
*> \endhtmlonly
|
||
|
*
|
||
|
* Definition:
|
||
|
* ===========
|
||
|
*
|
||
|
* SUBROUTINE ZGBRFSX( TRANS, EQUED, N, KL, KU, NRHS, AB, LDAB, AFB,
|
||
|
* LDAFB, IPIV, R, C, B, LDB, X, LDX, RCOND,
|
||
|
* BERR, N_ERR_BNDS, ERR_BNDS_NORM,
|
||
|
* ERR_BNDS_COMP, NPARAMS, PARAMS, WORK, RWORK,
|
||
|
* INFO )
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
* CHARACTER TRANS, EQUED
|
||
|
* INTEGER INFO, LDAB, LDAFB, LDB, LDX, N, KL, KU, NRHS,
|
||
|
* $ NPARAMS, N_ERR_BNDS
|
||
|
* DOUBLE PRECISION RCOND
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
* INTEGER IPIV( * )
|
||
|
* COMPLEX*16 AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ),
|
||
|
* $ X( LDX , * ),WORK( * )
|
||
|
* DOUBLE PRECISION R( * ), C( * ), PARAMS( * ), BERR( * ),
|
||
|
* $ ERR_BNDS_NORM( NRHS, * ),
|
||
|
* $ ERR_BNDS_COMP( NRHS, * ), RWORK( * )
|
||
|
* ..
|
||
|
*
|
||
|
*
|
||
|
*> \par Purpose:
|
||
|
* =============
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*> ZGBRFSX improves the computed solution to a system of linear
|
||
|
*> equations and provides error bounds and backward error estimates
|
||
|
*> for the solution. In addition to normwise error bound, the code
|
||
|
*> provides maximum componentwise error bound if possible. See
|
||
|
*> comments for ERR_BNDS_NORM and ERR_BNDS_COMP for details of the
|
||
|
*> error bounds.
|
||
|
*>
|
||
|
*> The original system of linear equations may have been equilibrated
|
||
|
*> before calling this routine, as described by arguments EQUED, R
|
||
|
*> and C below. In this case, the solution and error bounds returned
|
||
|
*> are for the original unequilibrated system.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Arguments:
|
||
|
* ==========
|
||
|
*
|
||
|
*> \verbatim
|
||
|
*> Some optional parameters are bundled in the PARAMS array. These
|
||
|
*> settings determine how refinement is performed, but often the
|
||
|
*> defaults are acceptable. If the defaults are acceptable, users
|
||
|
*> can pass NPARAMS = 0 which prevents the source code from accessing
|
||
|
*> the PARAMS argument.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] TRANS
|
||
|
*> \verbatim
|
||
|
*> TRANS is CHARACTER*1
|
||
|
*> Specifies the form of the system of equations:
|
||
|
*> = 'N': A * X = B (No transpose)
|
||
|
*> = 'T': A**T * X = B (Transpose)
|
||
|
*> = 'C': A**H * X = B (Conjugate transpose)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] EQUED
|
||
|
*> \verbatim
|
||
|
*> EQUED is CHARACTER*1
|
||
|
*> Specifies the form of equilibration that was done to A
|
||
|
*> before calling this routine. This is needed to compute
|
||
|
*> the solution and error bounds correctly.
|
||
|
*> = 'N': No equilibration
|
||
|
*> = 'R': Row equilibration, i.e., A has been premultiplied by
|
||
|
*> diag(R).
|
||
|
*> = 'C': Column equilibration, i.e., A has been postmultiplied
|
||
|
*> by diag(C).
|
||
|
*> = 'B': Both row and column equilibration, i.e., A has been
|
||
|
*> replaced by diag(R) * A * diag(C).
|
||
|
*> The right hand side B has been changed accordingly.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] N
|
||
|
*> \verbatim
|
||
|
*> N is INTEGER
|
||
|
*> The order of the matrix A. N >= 0.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] KL
|
||
|
*> \verbatim
|
||
|
*> KL is INTEGER
|
||
|
*> The number of subdiagonals within the band of A. KL >= 0.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] KU
|
||
|
*> \verbatim
|
||
|
*> KU is INTEGER
|
||
|
*> The number of superdiagonals within the band of A. KU >= 0.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] NRHS
|
||
|
*> \verbatim
|
||
|
*> NRHS is INTEGER
|
||
|
*> The number of right hand sides, i.e., the number of columns
|
||
|
*> of the matrices B and X. NRHS >= 0.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] AB
|
||
|
*> \verbatim
|
||
|
*> AB is COMPLEX*16 array, dimension (LDAB,N)
|
||
|
*> The original band matrix A, stored in rows 1 to KL+KU+1.
|
||
|
*> The j-th column of A is stored in the j-th column of the
|
||
|
*> array AB as follows:
|
||
|
*> AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(n,j+kl).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDAB
|
||
|
*> \verbatim
|
||
|
*> LDAB is INTEGER
|
||
|
*> The leading dimension of the array AB. LDAB >= KL+KU+1.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] AFB
|
||
|
*> \verbatim
|
||
|
*> AFB is COMPLEX*16 array, dimension (LDAFB,N)
|
||
|
*> Details of the LU factorization of the band matrix A, as
|
||
|
*> computed by ZGBTRF. U is stored as an upper triangular band
|
||
|
*> matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, and
|
||
|
*> the multipliers used during the factorization are stored in
|
||
|
*> rows KL+KU+2 to 2*KL+KU+1.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDAFB
|
||
|
*> \verbatim
|
||
|
*> LDAFB is INTEGER
|
||
|
*> The leading dimension of the array AFB. LDAFB >= 2*KL*KU+1.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] IPIV
|
||
|
*> \verbatim
|
||
|
*> IPIV is INTEGER array, dimension (N)
|
||
|
*> The pivot indices from ZGETRF; for 1<=i<=N, row i of the
|
||
|
*> matrix was interchanged with row IPIV(i).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] R
|
||
|
*> \verbatim
|
||
|
*> R is DOUBLE PRECISION array, dimension (N)
|
||
|
*> The row scale factors for A. If EQUED = 'R' or 'B', A is
|
||
|
*> multiplied on the left by diag(R); if EQUED = 'N' or 'C', R
|
||
|
*> is not accessed. R is an input argument if FACT = 'F';
|
||
|
*> otherwise, R is an output argument. If FACT = 'F' and
|
||
|
*> EQUED = 'R' or 'B', each element of R must be positive.
|
||
|
*> If R is output, each element of R is a power of the radix.
|
||
|
*> If R is input, each element of R should be a power of the radix
|
||
|
*> to ensure a reliable solution and error estimates. Scaling by
|
||
|
*> powers of the radix does not cause rounding errors unless the
|
||
|
*> result underflows or overflows. Rounding errors during scaling
|
||
|
*> lead to refining with a matrix that is not equivalent to the
|
||
|
*> input matrix, producing error estimates that may not be
|
||
|
*> reliable.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] C
|
||
|
*> \verbatim
|
||
|
*> C is DOUBLE PRECISION array, dimension (N)
|
||
|
*> The column scale factors for A. If EQUED = 'C' or 'B', A is
|
||
|
*> multiplied on the right by diag(C); if EQUED = 'N' or 'R', C
|
||
|
*> is not accessed. C is an input argument if FACT = 'F';
|
||
|
*> otherwise, C is an output argument. If FACT = 'F' and
|
||
|
*> EQUED = 'C' or 'B', each element of C must be positive.
|
||
|
*> If C is output, each element of C is a power of the radix.
|
||
|
*> If C is input, each element of C should be a power of the radix
|
||
|
*> to ensure a reliable solution and error estimates. Scaling by
|
||
|
*> powers of the radix does not cause rounding errors unless the
|
||
|
*> result underflows or overflows. Rounding errors during scaling
|
||
|
*> lead to refining with a matrix that is not equivalent to the
|
||
|
*> input matrix, producing error estimates that may not be
|
||
|
*> reliable.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] B
|
||
|
*> \verbatim
|
||
|
*> B is COMPLEX*16 array, dimension (LDB,NRHS)
|
||
|
*> The right hand side matrix B.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDB
|
||
|
*> \verbatim
|
||
|
*> LDB is INTEGER
|
||
|
*> The leading dimension of the array B. LDB >= max(1,N).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] X
|
||
|
*> \verbatim
|
||
|
*> X is COMPLEX*16 array, dimension (LDX,NRHS)
|
||
|
*> On entry, the solution matrix X, as computed by ZGETRS.
|
||
|
*> On exit, the improved solution matrix X.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDX
|
||
|
*> \verbatim
|
||
|
*> LDX is INTEGER
|
||
|
*> The leading dimension of the array X. LDX >= max(1,N).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] RCOND
|
||
|
*> \verbatim
|
||
|
*> RCOND is DOUBLE PRECISION
|
||
|
*> Reciprocal scaled condition number. This is an estimate of the
|
||
|
*> reciprocal Skeel condition number of the matrix A after
|
||
|
*> equilibration (if done). If this is less than the machine
|
||
|
*> precision (in particular, if it is zero), the matrix is singular
|
||
|
*> to working precision. Note that the error may still be small even
|
||
|
*> if this number is very small and the matrix appears ill-
|
||
|
*> conditioned.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] BERR
|
||
|
*> \verbatim
|
||
|
*> BERR is DOUBLE PRECISION array, dimension (NRHS)
|
||
|
*> Componentwise relative backward error. This is the
|
||
|
*> componentwise relative backward error of each solution vector X(j)
|
||
|
*> (i.e., the smallest relative change in any element of A or B that
|
||
|
*> makes X(j) an exact solution).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] N_ERR_BNDS
|
||
|
*> \verbatim
|
||
|
*> N_ERR_BNDS is INTEGER
|
||
|
*> Number of error bounds to return for each right hand side
|
||
|
*> and each type (normwise or componentwise). See ERR_BNDS_NORM and
|
||
|
*> ERR_BNDS_COMP below.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] ERR_BNDS_NORM
|
||
|
*> \verbatim
|
||
|
*> ERR_BNDS_NORM is DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS)
|
||
|
*> For each right-hand side, this array contains information about
|
||
|
*> various error bounds and condition numbers corresponding to the
|
||
|
*> normwise relative error, which is defined as follows:
|
||
|
*>
|
||
|
*> Normwise relative error in the ith solution vector:
|
||
|
*> max_j (abs(XTRUE(j,i) - X(j,i)))
|
||
|
*> ------------------------------
|
||
|
*> max_j abs(X(j,i))
|
||
|
*>
|
||
|
*> The array is indexed by the type of error information as described
|
||
|
*> below. There currently are up to three pieces of information
|
||
|
*> returned.
|
||
|
*>
|
||
|
*> The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
|
||
|
*> right-hand side.
|
||
|
*>
|
||
|
*> The second index in ERR_BNDS_NORM(:,err) contains the following
|
||
|
*> three fields:
|
||
|
*> err = 1 "Trust/don't trust" boolean. Trust the answer if the
|
||
|
*> reciprocal condition number is less than the threshold
|
||
|
*> sqrt(n) * dlamch('Epsilon').
|
||
|
*>
|
||
|
*> err = 2 "Guaranteed" error bound: The estimated forward error,
|
||
|
*> almost certainly within a factor of 10 of the true error
|
||
|
*> so long as the next entry is greater than the threshold
|
||
|
*> sqrt(n) * dlamch('Epsilon'). This error bound should only
|
||
|
*> be trusted if the previous boolean is true.
|
||
|
*>
|
||
|
*> err = 3 Reciprocal condition number: Estimated normwise
|
||
|
*> reciprocal condition number. Compared with the threshold
|
||
|
*> sqrt(n) * dlamch('Epsilon') to determine if the error
|
||
|
*> estimate is "guaranteed". These reciprocal condition
|
||
|
*> numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
|
||
|
*> appropriately scaled matrix Z.
|
||
|
*> Let Z = S*A, where S scales each row by a power of the
|
||
|
*> radix so all absolute row sums of Z are approximately 1.
|
||
|
*>
|
||
|
*> See Lapack Working Note 165 for further details and extra
|
||
|
*> cautions.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] ERR_BNDS_COMP
|
||
|
*> \verbatim
|
||
|
*> ERR_BNDS_COMP is DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS)
|
||
|
*> For each right-hand side, this array contains information about
|
||
|
*> various error bounds and condition numbers corresponding to the
|
||
|
*> componentwise relative error, which is defined as follows:
|
||
|
*>
|
||
|
*> Componentwise relative error in the ith solution vector:
|
||
|
*> abs(XTRUE(j,i) - X(j,i))
|
||
|
*> max_j ----------------------
|
||
|
*> abs(X(j,i))
|
||
|
*>
|
||
|
*> The array is indexed by the right-hand side i (on which the
|
||
|
*> componentwise relative error depends), and the type of error
|
||
|
*> information as described below. There currently are up to three
|
||
|
*> pieces of information returned for each right-hand side. If
|
||
|
*> componentwise accuracy is not requested (PARAMS(3) = 0.0), then
|
||
|
*> ERR_BNDS_COMP is not accessed. If N_ERR_BNDS < 3, then at most
|
||
|
*> the first (:,N_ERR_BNDS) entries are returned.
|
||
|
*>
|
||
|
*> The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
|
||
|
*> right-hand side.
|
||
|
*>
|
||
|
*> The second index in ERR_BNDS_COMP(:,err) contains the following
|
||
|
*> three fields:
|
||
|
*> err = 1 "Trust/don't trust" boolean. Trust the answer if the
|
||
|
*> reciprocal condition number is less than the threshold
|
||
|
*> sqrt(n) * dlamch('Epsilon').
|
||
|
*>
|
||
|
*> err = 2 "Guaranteed" error bound: The estimated forward error,
|
||
|
*> almost certainly within a factor of 10 of the true error
|
||
|
*> so long as the next entry is greater than the threshold
|
||
|
*> sqrt(n) * dlamch('Epsilon'). This error bound should only
|
||
|
*> be trusted if the previous boolean is true.
|
||
|
*>
|
||
|
*> err = 3 Reciprocal condition number: Estimated componentwise
|
||
|
*> reciprocal condition number. Compared with the threshold
|
||
|
*> sqrt(n) * dlamch('Epsilon') to determine if the error
|
||
|
*> estimate is "guaranteed". These reciprocal condition
|
||
|
*> numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
|
||
|
*> appropriately scaled matrix Z.
|
||
|
*> Let Z = S*(A*diag(x)), where x is the solution for the
|
||
|
*> current right-hand side and S scales each row of
|
||
|
*> A*diag(x) by a power of the radix so all absolute row
|
||
|
*> sums of Z are approximately 1.
|
||
|
*>
|
||
|
*> See Lapack Working Note 165 for further details and extra
|
||
|
*> cautions.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] NPARAMS
|
||
|
*> \verbatim
|
||
|
*> NPARAMS is INTEGER
|
||
|
*> Specifies the number of parameters set in PARAMS. If <= 0, the
|
||
|
*> PARAMS array is never referenced and default values are used.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] PARAMS
|
||
|
*> \verbatim
|
||
|
*> PARAMS is DOUBLE PRECISION array, dimension NPARAMS
|
||
|
*> Specifies algorithm parameters. If an entry is < 0.0, then
|
||
|
*> that entry will be filled with default value used for that
|
||
|
*> parameter. Only positions up to NPARAMS are accessed; defaults
|
||
|
*> are used for higher-numbered parameters.
|
||
|
*>
|
||
|
*> PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative
|
||
|
*> refinement or not.
|
||
|
*> Default: 1.0D+0
|
||
|
*> = 0.0: No refinement is performed, and no error bounds are
|
||
|
*> computed.
|
||
|
*> = 1.0: Use the double-precision refinement algorithm,
|
||
|
*> possibly with doubled-single computations if the
|
||
|
*> compilation environment does not support DOUBLE
|
||
|
*> PRECISION.
|
||
|
*> (other values are reserved for future use)
|
||
|
*>
|
||
|
*> PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual
|
||
|
*> computations allowed for refinement.
|
||
|
*> Default: 10
|
||
|
*> Aggressive: Set to 100 to permit convergence using approximate
|
||
|
*> factorizations or factorizations other than LU. If
|
||
|
*> the factorization uses a technique other than
|
||
|
*> Gaussian elimination, the guarantees in
|
||
|
*> err_bnds_norm and err_bnds_comp may no longer be
|
||
|
*> trustworthy.
|
||
|
*>
|
||
|
*> PARAMS(LA_LINRX_CWISE_I = 3) : Flag determining if the code
|
||
|
*> will attempt to find a solution with small componentwise
|
||
|
*> relative error in the double-precision algorithm. Positive
|
||
|
*> is true, 0.0 is false.
|
||
|
*> Default: 1.0 (attempt componentwise convergence)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] WORK
|
||
|
*> \verbatim
|
||
|
*> WORK is COMPLEX*16 array, dimension (2*N)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] RWORK
|
||
|
*> \verbatim
|
||
|
*> RWORK is DOUBLE PRECISION array, dimension (2*N)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] INFO
|
||
|
*> \verbatim
|
||
|
*> INFO is INTEGER
|
||
|
*> = 0: Successful exit. The solution to every right-hand side is
|
||
|
*> guaranteed.
|
||
|
*> < 0: If INFO = -i, the i-th argument had an illegal value
|
||
|
*> > 0 and <= N: U(INFO,INFO) is exactly zero. The factorization
|
||
|
*> has been completed, but the factor U is exactly singular, so
|
||
|
*> the solution and error bounds could not be computed. RCOND = 0
|
||
|
*> is returned.
|
||
|
*> = N+J: The solution corresponding to the Jth right-hand side is
|
||
|
*> not guaranteed. The solutions corresponding to other right-
|
||
|
*> hand sides K with K > J may not be guaranteed as well, but
|
||
|
*> only the first such right-hand side is reported. If a small
|
||
|
*> componentwise error is not requested (PARAMS(3) = 0.0) then
|
||
|
*> the Jth right-hand side is the first with a normwise error
|
||
|
*> bound that is not guaranteed (the smallest J such
|
||
|
*> that ERR_BNDS_NORM(J,1) = 0.0). By default (PARAMS(3) = 1.0)
|
||
|
*> the Jth right-hand side is the first with either a normwise or
|
||
|
*> componentwise error bound that is not guaranteed (the smallest
|
||
|
*> J such that either ERR_BNDS_NORM(J,1) = 0.0 or
|
||
|
*> ERR_BNDS_COMP(J,1) = 0.0). See the definition of
|
||
|
*> ERR_BNDS_NORM(:,1) and ERR_BNDS_COMP(:,1). To get information
|
||
|
*> about all of the right-hand sides check ERR_BNDS_NORM or
|
||
|
*> ERR_BNDS_COMP.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Authors:
|
||
|
* ========
|
||
|
*
|
||
|
*> \author Univ. of Tennessee
|
||
|
*> \author Univ. of California Berkeley
|
||
|
*> \author Univ. of Colorado Denver
|
||
|
*> \author NAG Ltd.
|
||
|
*
|
||
|
*> \ingroup complex16GBcomputational
|
||
|
*
|
||
|
* =====================================================================
|
||
|
SUBROUTINE ZGBRFSX( TRANS, EQUED, N, KL, KU, NRHS, AB, LDAB, AFB,
|
||
|
$ LDAFB, IPIV, R, C, B, LDB, X, LDX, RCOND,
|
||
|
$ BERR, N_ERR_BNDS, ERR_BNDS_NORM,
|
||
|
$ ERR_BNDS_COMP, NPARAMS, PARAMS, WORK, RWORK,
|
||
|
$ INFO )
|
||
|
*
|
||
|
* -- LAPACK computational routine --
|
||
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
CHARACTER TRANS, EQUED
|
||
|
INTEGER INFO, LDAB, LDAFB, LDB, LDX, N, KL, KU, NRHS,
|
||
|
$ NPARAMS, N_ERR_BNDS
|
||
|
DOUBLE PRECISION RCOND
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
INTEGER IPIV( * )
|
||
|
COMPLEX*16 AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ),
|
||
|
$ X( LDX , * ),WORK( * )
|
||
|
DOUBLE PRECISION R( * ), C( * ), PARAMS( * ), BERR( * ),
|
||
|
$ ERR_BNDS_NORM( NRHS, * ),
|
||
|
$ ERR_BNDS_COMP( NRHS, * ), RWORK( * )
|
||
|
* ..
|
||
|
*
|
||
|
* ==================================================================
|
||
|
*
|
||
|
* .. Parameters ..
|
||
|
DOUBLE PRECISION ZERO, ONE
|
||
|
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
|
||
|
DOUBLE PRECISION ITREF_DEFAULT, ITHRESH_DEFAULT
|
||
|
DOUBLE PRECISION COMPONENTWISE_DEFAULT, RTHRESH_DEFAULT
|
||
|
DOUBLE PRECISION DZTHRESH_DEFAULT
|
||
|
PARAMETER ( ITREF_DEFAULT = 1.0D+0 )
|
||
|
PARAMETER ( ITHRESH_DEFAULT = 10.0D+0 )
|
||
|
PARAMETER ( COMPONENTWISE_DEFAULT = 1.0D+0 )
|
||
|
PARAMETER ( RTHRESH_DEFAULT = 0.5D+0 )
|
||
|
PARAMETER ( DZTHRESH_DEFAULT = 0.25D+0 )
|
||
|
INTEGER LA_LINRX_ITREF_I, LA_LINRX_ITHRESH_I,
|
||
|
$ LA_LINRX_CWISE_I
|
||
|
PARAMETER ( LA_LINRX_ITREF_I = 1,
|
||
|
$ LA_LINRX_ITHRESH_I = 2 )
|
||
|
PARAMETER ( LA_LINRX_CWISE_I = 3 )
|
||
|
INTEGER LA_LINRX_TRUST_I, LA_LINRX_ERR_I,
|
||
|
$ LA_LINRX_RCOND_I
|
||
|
PARAMETER ( LA_LINRX_TRUST_I = 1, LA_LINRX_ERR_I = 2 )
|
||
|
PARAMETER ( LA_LINRX_RCOND_I = 3 )
|
||
|
* ..
|
||
|
* .. Local Scalars ..
|
||
|
CHARACTER(1) NORM
|
||
|
LOGICAL ROWEQU, COLEQU, NOTRAN, IGNORE_CWISE
|
||
|
INTEGER J, TRANS_TYPE, PREC_TYPE, REF_TYPE, N_NORMS,
|
||
|
$ ITHRESH
|
||
|
DOUBLE PRECISION ANORM, RCOND_TMP, ILLRCOND_THRESH, ERR_LBND,
|
||
|
$ CWISE_WRONG, RTHRESH, UNSTABLE_THRESH
|
||
|
* ..
|
||
|
* .. External Subroutines ..
|
||
|
EXTERNAL XERBLA, ZGBCON, ZLA_GBRFSX_EXTENDED
|
||
|
* ..
|
||
|
* .. Intrinsic Functions ..
|
||
|
INTRINSIC MAX, SQRT, TRANSFER
|
||
|
* ..
|
||
|
* .. External Functions ..
|
||
|
EXTERNAL LSAME, ILAPREC
|
||
|
EXTERNAL DLAMCH, ZLANGB, ZLA_GBRCOND_X, ZLA_GBRCOND_C
|
||
|
DOUBLE PRECISION DLAMCH, ZLANGB, ZLA_GBRCOND_X, ZLA_GBRCOND_C
|
||
|
LOGICAL LSAME
|
||
|
INTEGER ILATRANS, ILAPREC
|
||
|
* ..
|
||
|
* .. Executable Statements ..
|
||
|
*
|
||
|
* Check the input parameters.
|
||
|
*
|
||
|
INFO = 0
|
||
|
TRANS_TYPE = ILATRANS( TRANS )
|
||
|
REF_TYPE = INT( ITREF_DEFAULT )
|
||
|
IF ( NPARAMS .GE. LA_LINRX_ITREF_I ) THEN
|
||
|
IF ( PARAMS( LA_LINRX_ITREF_I ) .LT. 0.0D+0 ) THEN
|
||
|
PARAMS( LA_LINRX_ITREF_I ) = ITREF_DEFAULT
|
||
|
ELSE
|
||
|
REF_TYPE = PARAMS( LA_LINRX_ITREF_I )
|
||
|
END IF
|
||
|
END IF
|
||
|
*
|
||
|
* Set default parameters.
|
||
|
*
|
||
|
ILLRCOND_THRESH = DBLE( N ) * DLAMCH( 'Epsilon' )
|
||
|
ITHRESH = INT( ITHRESH_DEFAULT )
|
||
|
RTHRESH = RTHRESH_DEFAULT
|
||
|
UNSTABLE_THRESH = DZTHRESH_DEFAULT
|
||
|
IGNORE_CWISE = COMPONENTWISE_DEFAULT .EQ. 0.0D+0
|
||
|
*
|
||
|
IF ( NPARAMS.GE.LA_LINRX_ITHRESH_I ) THEN
|
||
|
IF ( PARAMS( LA_LINRX_ITHRESH_I ).LT.0.0D+0 ) THEN
|
||
|
PARAMS( LA_LINRX_ITHRESH_I ) = ITHRESH
|
||
|
ELSE
|
||
|
ITHRESH = INT( PARAMS( LA_LINRX_ITHRESH_I ) )
|
||
|
END IF
|
||
|
END IF
|
||
|
IF ( NPARAMS.GE.LA_LINRX_CWISE_I ) THEN
|
||
|
IF ( PARAMS( LA_LINRX_CWISE_I ).LT.0.0D+0 ) THEN
|
||
|
IF ( IGNORE_CWISE ) THEN
|
||
|
PARAMS( LA_LINRX_CWISE_I ) = 0.0D+0
|
||
|
ELSE
|
||
|
PARAMS( LA_LINRX_CWISE_I ) = 1.0D+0
|
||
|
END IF
|
||
|
ELSE
|
||
|
IGNORE_CWISE = PARAMS( LA_LINRX_CWISE_I ) .EQ. 0.0D+0
|
||
|
END IF
|
||
|
END IF
|
||
|
IF ( REF_TYPE .EQ. 0 .OR. N_ERR_BNDS .EQ. 0 ) THEN
|
||
|
N_NORMS = 0
|
||
|
ELSE IF ( IGNORE_CWISE ) THEN
|
||
|
N_NORMS = 1
|
||
|
ELSE
|
||
|
N_NORMS = 2
|
||
|
END IF
|
||
|
*
|
||
|
NOTRAN = LSAME( TRANS, 'N' )
|
||
|
ROWEQU = LSAME( EQUED, 'R' ) .OR. LSAME( EQUED, 'B' )
|
||
|
COLEQU = LSAME( EQUED, 'C' ) .OR. LSAME( EQUED, 'B' )
|
||
|
*
|
||
|
* Test input parameters.
|
||
|
*
|
||
|
IF( TRANS_TYPE.EQ.-1 ) THEN
|
||
|
INFO = -1
|
||
|
ELSE IF( .NOT.ROWEQU .AND. .NOT.COLEQU .AND.
|
||
|
$ .NOT.LSAME( EQUED, 'N' ) ) THEN
|
||
|
INFO = -2
|
||
|
ELSE IF( N.LT.0 ) THEN
|
||
|
INFO = -3
|
||
|
ELSE IF( KL.LT.0 ) THEN
|
||
|
INFO = -4
|
||
|
ELSE IF( KU.LT.0 ) THEN
|
||
|
INFO = -5
|
||
|
ELSE IF( NRHS.LT.0 ) THEN
|
||
|
INFO = -6
|
||
|
ELSE IF( LDAB.LT.KL+KU+1 ) THEN
|
||
|
INFO = -8
|
||
|
ELSE IF( LDAFB.LT.2*KL+KU+1 ) THEN
|
||
|
INFO = -10
|
||
|
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
|
||
|
INFO = -13
|
||
|
ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
|
||
|
INFO = -15
|
||
|
END IF
|
||
|
IF( INFO.NE.0 ) THEN
|
||
|
CALL XERBLA( 'ZGBRFSX', -INFO )
|
||
|
RETURN
|
||
|
END IF
|
||
|
*
|
||
|
* Quick return if possible.
|
||
|
*
|
||
|
IF( N.EQ.0 .OR. NRHS.EQ.0 ) THEN
|
||
|
RCOND = 1.0D+0
|
||
|
DO J = 1, NRHS
|
||
|
BERR( J ) = 0.0D+0
|
||
|
IF ( N_ERR_BNDS .GE. 1 ) THEN
|
||
|
ERR_BNDS_NORM( J, LA_LINRX_TRUST_I ) = 1.0D+0
|
||
|
ERR_BNDS_COMP( J, LA_LINRX_TRUST_I ) = 1.0D+0
|
||
|
END IF
|
||
|
IF ( N_ERR_BNDS .GE. 2 ) THEN
|
||
|
ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) = 0.0D+0
|
||
|
ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) = 0.0D+0
|
||
|
END IF
|
||
|
IF ( N_ERR_BNDS .GE. 3 ) THEN
|
||
|
ERR_BNDS_NORM( J, LA_LINRX_RCOND_I ) = 1.0D+0
|
||
|
ERR_BNDS_COMP( J, LA_LINRX_RCOND_I ) = 1.0D+0
|
||
|
END IF
|
||
|
END DO
|
||
|
RETURN
|
||
|
END IF
|
||
|
*
|
||
|
* Default to failure.
|
||
|
*
|
||
|
RCOND = 0.0D+0
|
||
|
DO J = 1, NRHS
|
||
|
BERR( J ) = 1.0D+0
|
||
|
IF ( N_ERR_BNDS .GE. 1 ) THEN
|
||
|
ERR_BNDS_NORM( J, LA_LINRX_TRUST_I ) = 1.0D+0
|
||
|
ERR_BNDS_COMP( J, LA_LINRX_TRUST_I ) = 1.0D+0
|
||
|
END IF
|
||
|
IF ( N_ERR_BNDS .GE. 2 ) THEN
|
||
|
ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) = 1.0D+0
|
||
|
ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) = 1.0D+0
|
||
|
END IF
|
||
|
IF ( N_ERR_BNDS .GE. 3 ) THEN
|
||
|
ERR_BNDS_NORM( J, LA_LINRX_RCOND_I ) = 0.0D+0
|
||
|
ERR_BNDS_COMP( J, LA_LINRX_RCOND_I ) = 0.0D+0
|
||
|
END IF
|
||
|
END DO
|
||
|
*
|
||
|
* Compute the norm of A and the reciprocal of the condition
|
||
|
* number of A.
|
||
|
*
|
||
|
IF( NOTRAN ) THEN
|
||
|
NORM = 'I'
|
||
|
ELSE
|
||
|
NORM = '1'
|
||
|
END IF
|
||
|
ANORM = ZLANGB( NORM, N, KL, KU, AB, LDAB, RWORK )
|
||
|
CALL ZGBCON( NORM, N, KL, KU, AFB, LDAFB, IPIV, ANORM, RCOND,
|
||
|
$ WORK, RWORK, INFO )
|
||
|
*
|
||
|
* Perform refinement on each right-hand side
|
||
|
*
|
||
|
IF ( REF_TYPE .NE. 0 .AND. INFO .EQ. 0 ) THEN
|
||
|
|
||
|
PREC_TYPE = ILAPREC( 'E' )
|
||
|
|
||
|
IF ( NOTRAN ) THEN
|
||
|
CALL ZLA_GBRFSX_EXTENDED( PREC_TYPE, TRANS_TYPE, N, KL, KU,
|
||
|
$ NRHS, AB, LDAB, AFB, LDAFB, IPIV, COLEQU, C, B,
|
||
|
$ LDB, X, LDX, BERR, N_NORMS, ERR_BNDS_NORM,
|
||
|
$ ERR_BNDS_COMP, WORK, RWORK, WORK(N+1),
|
||
|
$ TRANSFER (RWORK(1:2*N), (/ (ZERO, ZERO) /), N),
|
||
|
$ RCOND, ITHRESH, RTHRESH, UNSTABLE_THRESH, IGNORE_CWISE,
|
||
|
$ INFO )
|
||
|
ELSE
|
||
|
CALL ZLA_GBRFSX_EXTENDED( PREC_TYPE, TRANS_TYPE, N, KL, KU,
|
||
|
$ NRHS, AB, LDAB, AFB, LDAFB, IPIV, ROWEQU, R, B,
|
||
|
$ LDB, X, LDX, BERR, N_NORMS, ERR_BNDS_NORM,
|
||
|
$ ERR_BNDS_COMP, WORK, RWORK, WORK(N+1),
|
||
|
$ TRANSFER (RWORK(1:2*N), (/ (ZERO, ZERO) /), N),
|
||
|
$ RCOND, ITHRESH, RTHRESH, UNSTABLE_THRESH, IGNORE_CWISE,
|
||
|
$ INFO )
|
||
|
END IF
|
||
|
END IF
|
||
|
|
||
|
ERR_LBND = MAX( 10.0D+0, SQRT( DBLE( N ) ) ) * DLAMCH( 'Epsilon' )
|
||
|
IF (N_ERR_BNDS .GE. 1 .AND. N_NORMS .GE. 1) THEN
|
||
|
*
|
||
|
* Compute scaled normwise condition number cond(A*C).
|
||
|
*
|
||
|
IF ( COLEQU .AND. NOTRAN ) THEN
|
||
|
RCOND_TMP = ZLA_GBRCOND_C( TRANS, N, KL, KU, AB, LDAB, AFB,
|
||
|
$ LDAFB, IPIV, C, .TRUE., INFO, WORK, RWORK )
|
||
|
ELSE IF ( ROWEQU .AND. .NOT. NOTRAN ) THEN
|
||
|
RCOND_TMP = ZLA_GBRCOND_C( TRANS, N, KL, KU, AB, LDAB, AFB,
|
||
|
$ LDAFB, IPIV, R, .TRUE., INFO, WORK, RWORK )
|
||
|
ELSE
|
||
|
RCOND_TMP = ZLA_GBRCOND_C( TRANS, N, KL, KU, AB, LDAB, AFB,
|
||
|
$ LDAFB, IPIV, C, .FALSE., INFO, WORK, RWORK )
|
||
|
END IF
|
||
|
DO J = 1, NRHS
|
||
|
*
|
||
|
* Cap the error at 1.0.
|
||
|
*
|
||
|
IF ( N_ERR_BNDS .GE. LA_LINRX_ERR_I
|
||
|
$ .AND. ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) .GT. 1.0D+0)
|
||
|
$ ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) = 1.0D+0
|
||
|
*
|
||
|
* Threshold the error (see LAWN).
|
||
|
*
|
||
|
IF ( RCOND_TMP .LT. ILLRCOND_THRESH ) THEN
|
||
|
ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) = 1.0D+0
|
||
|
ERR_BNDS_NORM( J, LA_LINRX_TRUST_I ) = 0.0D+0
|
||
|
IF ( INFO .LE. N ) INFO = N + J
|
||
|
ELSE IF ( ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) .LT. ERR_LBND )
|
||
|
$ THEN
|
||
|
ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) = ERR_LBND
|
||
|
ERR_BNDS_NORM( J, LA_LINRX_TRUST_I ) = 1.0D+0
|
||
|
END IF
|
||
|
*
|
||
|
* Save the condition number.
|
||
|
*
|
||
|
IF ( N_ERR_BNDS .GE. LA_LINRX_RCOND_I ) THEN
|
||
|
ERR_BNDS_NORM( J, LA_LINRX_RCOND_I ) = RCOND_TMP
|
||
|
END IF
|
||
|
|
||
|
END DO
|
||
|
END IF
|
||
|
|
||
|
IF (N_ERR_BNDS .GE. 1 .AND. N_NORMS .GE. 2) THEN
|
||
|
*
|
||
|
* Compute componentwise condition number cond(A*diag(Y(:,J))) for
|
||
|
* each right-hand side using the current solution as an estimate of
|
||
|
* the true solution. If the componentwise error estimate is too
|
||
|
* large, then the solution is a lousy estimate of truth and the
|
||
|
* estimated RCOND may be too optimistic. To avoid misleading users,
|
||
|
* the inverse condition number is set to 0.0 when the estimated
|
||
|
* cwise error is at least CWISE_WRONG.
|
||
|
*
|
||
|
CWISE_WRONG = SQRT( DLAMCH( 'Epsilon' ) )
|
||
|
DO J = 1, NRHS
|
||
|
IF (ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) .LT. CWISE_WRONG )
|
||
|
$ THEN
|
||
|
RCOND_TMP = ZLA_GBRCOND_X( TRANS, N, KL, KU, AB, LDAB,
|
||
|
$ AFB, LDAFB, IPIV, X( 1, J ), INFO, WORK, RWORK )
|
||
|
ELSE
|
||
|
RCOND_TMP = 0.0D+0
|
||
|
END IF
|
||
|
*
|
||
|
* Cap the error at 1.0.
|
||
|
*
|
||
|
IF ( N_ERR_BNDS .GE. LA_LINRX_ERR_I
|
||
|
$ .AND. ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) .GT. 1.0D+0 )
|
||
|
$ ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) = 1.0D+0
|
||
|
*
|
||
|
* Threshold the error (see LAWN).
|
||
|
*
|
||
|
IF ( RCOND_TMP .LT. ILLRCOND_THRESH ) THEN
|
||
|
ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) = 1.0D+0
|
||
|
ERR_BNDS_COMP( J, LA_LINRX_TRUST_I ) = 0.0D+0
|
||
|
IF ( PARAMS( LA_LINRX_CWISE_I ) .EQ. 1.0D+0
|
||
|
$ .AND. INFO.LT.N + J ) INFO = N + J
|
||
|
ELSE IF ( ERR_BNDS_COMP( J, LA_LINRX_ERR_I )
|
||
|
$ .LT. ERR_LBND ) THEN
|
||
|
ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) = ERR_LBND
|
||
|
ERR_BNDS_COMP( J, LA_LINRX_TRUST_I ) = 1.0D+0
|
||
|
END IF
|
||
|
*
|
||
|
* Save the condition number.
|
||
|
*
|
||
|
IF ( N_ERR_BNDS .GE. LA_LINRX_RCOND_I ) THEN
|
||
|
ERR_BNDS_COMP( J, LA_LINRX_RCOND_I ) = RCOND_TMP
|
||
|
END IF
|
||
|
|
||
|
END DO
|
||
|
END IF
|
||
|
*
|
||
|
RETURN
|
||
|
*
|
||
|
* End of ZGBRFSX
|
||
|
*
|
||
|
END
|