You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
555 lines
17 KiB
555 lines
17 KiB
2 years ago
|
*> \brief <b> ZGGEV3 computes the eigenvalues and, optionally, the left and/or right eigenvectors for GE matrices (blocked algorithm)</b>
|
||
|
*
|
||
|
* =========== DOCUMENTATION ===========
|
||
|
*
|
||
|
* Online html documentation available at
|
||
|
* http://www.netlib.org/lapack/explore-html/
|
||
|
*
|
||
|
*> \htmlonly
|
||
|
*> Download ZGGEV3 + dependencies
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zggev3.f">
|
||
|
*> [TGZ]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zggev3.f">
|
||
|
*> [ZIP]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zggev3.f">
|
||
|
*> [TXT]</a>
|
||
|
*> \endhtmlonly
|
||
|
*
|
||
|
* Definition:
|
||
|
* ===========
|
||
|
*
|
||
|
* SUBROUTINE ZGGEV3( JOBVL, JOBVR, N, A, LDA, B, LDB, ALPHA, BETA,
|
||
|
* VL, LDVL, VR, LDVR, WORK, LWORK, RWORK, INFO )
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
* CHARACTER JOBVL, JOBVR
|
||
|
* INTEGER INFO, LDA, LDB, LDVL, LDVR, LWORK, N
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
* DOUBLE PRECISION RWORK( * )
|
||
|
* COMPLEX*16 A( LDA, * ), ALPHA( * ), B( LDB, * ),
|
||
|
* $ BETA( * ), VL( LDVL, * ), VR( LDVR, * ),
|
||
|
* $ WORK( * )
|
||
|
* ..
|
||
|
*
|
||
|
*
|
||
|
*> \par Purpose:
|
||
|
* =============
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*> ZGGEV3 computes for a pair of N-by-N complex nonsymmetric matrices
|
||
|
*> (A,B), the generalized eigenvalues, and optionally, the left and/or
|
||
|
*> right generalized eigenvectors.
|
||
|
*>
|
||
|
*> A generalized eigenvalue for a pair of matrices (A,B) is a scalar
|
||
|
*> lambda or a ratio alpha/beta = lambda, such that A - lambda*B is
|
||
|
*> singular. It is usually represented as the pair (alpha,beta), as
|
||
|
*> there is a reasonable interpretation for beta=0, and even for both
|
||
|
*> being zero.
|
||
|
*>
|
||
|
*> The right generalized eigenvector v(j) corresponding to the
|
||
|
*> generalized eigenvalue lambda(j) of (A,B) satisfies
|
||
|
*>
|
||
|
*> A * v(j) = lambda(j) * B * v(j).
|
||
|
*>
|
||
|
*> The left generalized eigenvector u(j) corresponding to the
|
||
|
*> generalized eigenvalues lambda(j) of (A,B) satisfies
|
||
|
*>
|
||
|
*> u(j)**H * A = lambda(j) * u(j)**H * B
|
||
|
*>
|
||
|
*> where u(j)**H is the conjugate-transpose of u(j).
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Arguments:
|
||
|
* ==========
|
||
|
*
|
||
|
*> \param[in] JOBVL
|
||
|
*> \verbatim
|
||
|
*> JOBVL is CHARACTER*1
|
||
|
*> = 'N': do not compute the left generalized eigenvectors;
|
||
|
*> = 'V': compute the left generalized eigenvectors.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] JOBVR
|
||
|
*> \verbatim
|
||
|
*> JOBVR is CHARACTER*1
|
||
|
*> = 'N': do not compute the right generalized eigenvectors;
|
||
|
*> = 'V': compute the right generalized eigenvectors.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] N
|
||
|
*> \verbatim
|
||
|
*> N is INTEGER
|
||
|
*> The order of the matrices A, B, VL, and VR. N >= 0.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] A
|
||
|
*> \verbatim
|
||
|
*> A is COMPLEX*16 array, dimension (LDA, N)
|
||
|
*> On entry, the matrix A in the pair (A,B).
|
||
|
*> On exit, A has been overwritten.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDA
|
||
|
*> \verbatim
|
||
|
*> LDA is INTEGER
|
||
|
*> The leading dimension of A. LDA >= max(1,N).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] B
|
||
|
*> \verbatim
|
||
|
*> B is COMPLEX*16 array, dimension (LDB, N)
|
||
|
*> On entry, the matrix B in the pair (A,B).
|
||
|
*> On exit, B has been overwritten.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDB
|
||
|
*> \verbatim
|
||
|
*> LDB is INTEGER
|
||
|
*> The leading dimension of B. LDB >= max(1,N).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] ALPHA
|
||
|
*> \verbatim
|
||
|
*> ALPHA is COMPLEX*16 array, dimension (N)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] BETA
|
||
|
*> \verbatim
|
||
|
*> BETA is COMPLEX*16 array, dimension (N)
|
||
|
*> On exit, ALPHA(j)/BETA(j), j=1,...,N, will be the
|
||
|
*> generalized eigenvalues.
|
||
|
*>
|
||
|
*> Note: the quotients ALPHA(j)/BETA(j) may easily over- or
|
||
|
*> underflow, and BETA(j) may even be zero. Thus, the user
|
||
|
*> should avoid naively computing the ratio alpha/beta.
|
||
|
*> However, ALPHA will be always less than and usually
|
||
|
*> comparable with norm(A) in magnitude, and BETA always less
|
||
|
*> than and usually comparable with norm(B).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] VL
|
||
|
*> \verbatim
|
||
|
*> VL is COMPLEX*16 array, dimension (LDVL,N)
|
||
|
*> If JOBVL = 'V', the left generalized eigenvectors u(j) are
|
||
|
*> stored one after another in the columns of VL, in the same
|
||
|
*> order as their eigenvalues.
|
||
|
*> Each eigenvector is scaled so the largest component has
|
||
|
*> abs(real part) + abs(imag. part) = 1.
|
||
|
*> Not referenced if JOBVL = 'N'.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDVL
|
||
|
*> \verbatim
|
||
|
*> LDVL is INTEGER
|
||
|
*> The leading dimension of the matrix VL. LDVL >= 1, and
|
||
|
*> if JOBVL = 'V', LDVL >= N.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] VR
|
||
|
*> \verbatim
|
||
|
*> VR is COMPLEX*16 array, dimension (LDVR,N)
|
||
|
*> If JOBVR = 'V', the right generalized eigenvectors v(j) are
|
||
|
*> stored one after another in the columns of VR, in the same
|
||
|
*> order as their eigenvalues.
|
||
|
*> Each eigenvector is scaled so the largest component has
|
||
|
*> abs(real part) + abs(imag. part) = 1.
|
||
|
*> Not referenced if JOBVR = 'N'.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDVR
|
||
|
*> \verbatim
|
||
|
*> LDVR is INTEGER
|
||
|
*> The leading dimension of the matrix VR. LDVR >= 1, and
|
||
|
*> if JOBVR = 'V', LDVR >= N.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] WORK
|
||
|
*> \verbatim
|
||
|
*> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
|
||
|
*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LWORK
|
||
|
*> \verbatim
|
||
|
*> LWORK is INTEGER
|
||
|
*> The dimension of the array WORK.
|
||
|
*>
|
||
|
*> If LWORK = -1, then a workspace query is assumed; the routine
|
||
|
*> only calculates the optimal size of the WORK array, returns
|
||
|
*> this value as the first entry of the WORK array, and no error
|
||
|
*> message related to LWORK is issued by XERBLA.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] RWORK
|
||
|
*> \verbatim
|
||
|
*> RWORK is DOUBLE PRECISION array, dimension (8*N)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] INFO
|
||
|
*> \verbatim
|
||
|
*> INFO is INTEGER
|
||
|
*> = 0: successful exit
|
||
|
*> < 0: if INFO = -i, the i-th argument had an illegal value.
|
||
|
*> =1,...,N:
|
||
|
*> The QZ iteration failed. No eigenvectors have been
|
||
|
*> calculated, but ALPHA(j) and BETA(j) should be
|
||
|
*> correct for j=INFO+1,...,N.
|
||
|
*> > N: =N+1: other then QZ iteration failed in ZHGEQZ,
|
||
|
*> =N+2: error return from ZTGEVC.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Authors:
|
||
|
* ========
|
||
|
*
|
||
|
*> \author Univ. of Tennessee
|
||
|
*> \author Univ. of California Berkeley
|
||
|
*> \author Univ. of Colorado Denver
|
||
|
*> \author NAG Ltd.
|
||
|
*
|
||
|
*> \ingroup complex16GEeigen
|
||
|
*
|
||
|
* =====================================================================
|
||
|
SUBROUTINE ZGGEV3( JOBVL, JOBVR, N, A, LDA, B, LDB, ALPHA, BETA,
|
||
|
$ VL, LDVL, VR, LDVR, WORK, LWORK, RWORK, INFO )
|
||
|
*
|
||
|
* -- LAPACK driver routine --
|
||
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
CHARACTER JOBVL, JOBVR
|
||
|
INTEGER INFO, LDA, LDB, LDVL, LDVR, LWORK, N
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
DOUBLE PRECISION RWORK( * )
|
||
|
COMPLEX*16 A( LDA, * ), ALPHA( * ), B( LDB, * ),
|
||
|
$ BETA( * ), VL( LDVL, * ), VR( LDVR, * ),
|
||
|
$ WORK( * )
|
||
|
* ..
|
||
|
*
|
||
|
* =====================================================================
|
||
|
*
|
||
|
* .. Parameters ..
|
||
|
DOUBLE PRECISION ZERO, ONE
|
||
|
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
|
||
|
COMPLEX*16 CZERO, CONE
|
||
|
PARAMETER ( CZERO = ( 0.0D0, 0.0D0 ),
|
||
|
$ CONE = ( 1.0D0, 0.0D0 ) )
|
||
|
* ..
|
||
|
* .. Local Scalars ..
|
||
|
LOGICAL ILASCL, ILBSCL, ILV, ILVL, ILVR, LQUERY
|
||
|
CHARACTER CHTEMP
|
||
|
INTEGER ICOLS, IERR, IHI, IJOBVL, IJOBVR, ILEFT, ILO,
|
||
|
$ IN, IRIGHT, IROWS, IRWRK, ITAU, IWRK, JC, JR,
|
||
|
$ LWKOPT
|
||
|
DOUBLE PRECISION ANRM, ANRMTO, BIGNUM, BNRM, BNRMTO, EPS,
|
||
|
$ SMLNUM, TEMP
|
||
|
COMPLEX*16 X
|
||
|
* ..
|
||
|
* .. Local Arrays ..
|
||
|
LOGICAL LDUMMA( 1 )
|
||
|
* ..
|
||
|
* .. External Subroutines ..
|
||
|
EXTERNAL XERBLA, ZGEQRF, ZGGBAK, ZGGBAL, ZGGHD3, ZLAQZ0,
|
||
|
$ ZLACPY, ZLASCL, ZLASET, ZTGEVC, ZUNGQR, ZUNMQR
|
||
|
* ..
|
||
|
* .. External Functions ..
|
||
|
LOGICAL LSAME
|
||
|
DOUBLE PRECISION DLAMCH, ZLANGE
|
||
|
EXTERNAL LSAME, DLAMCH, ZLANGE
|
||
|
* ..
|
||
|
* .. Intrinsic Functions ..
|
||
|
INTRINSIC ABS, DBLE, DIMAG, MAX, SQRT
|
||
|
* ..
|
||
|
* .. Statement Functions ..
|
||
|
DOUBLE PRECISION ABS1
|
||
|
* ..
|
||
|
* .. Statement Function definitions ..
|
||
|
ABS1( X ) = ABS( DBLE( X ) ) + ABS( DIMAG( X ) )
|
||
|
* ..
|
||
|
* .. Executable Statements ..
|
||
|
*
|
||
|
* Decode the input arguments
|
||
|
*
|
||
|
IF( LSAME( JOBVL, 'N' ) ) THEN
|
||
|
IJOBVL = 1
|
||
|
ILVL = .FALSE.
|
||
|
ELSE IF( LSAME( JOBVL, 'V' ) ) THEN
|
||
|
IJOBVL = 2
|
||
|
ILVL = .TRUE.
|
||
|
ELSE
|
||
|
IJOBVL = -1
|
||
|
ILVL = .FALSE.
|
||
|
END IF
|
||
|
*
|
||
|
IF( LSAME( JOBVR, 'N' ) ) THEN
|
||
|
IJOBVR = 1
|
||
|
ILVR = .FALSE.
|
||
|
ELSE IF( LSAME( JOBVR, 'V' ) ) THEN
|
||
|
IJOBVR = 2
|
||
|
ILVR = .TRUE.
|
||
|
ELSE
|
||
|
IJOBVR = -1
|
||
|
ILVR = .FALSE.
|
||
|
END IF
|
||
|
ILV = ILVL .OR. ILVR
|
||
|
*
|
||
|
* Test the input arguments
|
||
|
*
|
||
|
INFO = 0
|
||
|
LQUERY = ( LWORK.EQ.-1 )
|
||
|
IF( IJOBVL.LE.0 ) THEN
|
||
|
INFO = -1
|
||
|
ELSE IF( IJOBVR.LE.0 ) THEN
|
||
|
INFO = -2
|
||
|
ELSE IF( N.LT.0 ) THEN
|
||
|
INFO = -3
|
||
|
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
|
||
|
INFO = -5
|
||
|
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
|
||
|
INFO = -7
|
||
|
ELSE IF( LDVL.LT.1 .OR. ( ILVL .AND. LDVL.LT.N ) ) THEN
|
||
|
INFO = -11
|
||
|
ELSE IF( LDVR.LT.1 .OR. ( ILVR .AND. LDVR.LT.N ) ) THEN
|
||
|
INFO = -13
|
||
|
ELSE IF( LWORK.LT.MAX( 1, 2*N ) .AND. .NOT.LQUERY ) THEN
|
||
|
INFO = -15
|
||
|
END IF
|
||
|
*
|
||
|
* Compute workspace
|
||
|
*
|
||
|
IF( INFO.EQ.0 ) THEN
|
||
|
CALL ZGEQRF( N, N, B, LDB, WORK, WORK, -1, IERR )
|
||
|
LWKOPT = MAX( 1, N+INT( WORK( 1 ) ) )
|
||
|
CALL ZUNMQR( 'L', 'C', N, N, N, B, LDB, WORK, A, LDA, WORK,
|
||
|
$ -1, IERR )
|
||
|
LWKOPT = MAX( LWKOPT, N+INT( WORK( 1 ) ) )
|
||
|
IF( ILVL ) THEN
|
||
|
CALL ZUNGQR( N, N, N, VL, LDVL, WORK, WORK, -1, IERR )
|
||
|
LWKOPT = MAX( LWKOPT, N+INT( WORK( 1 ) ) )
|
||
|
END IF
|
||
|
IF( ILV ) THEN
|
||
|
CALL ZGGHD3( JOBVL, JOBVR, N, 1, N, A, LDA, B, LDB, VL,
|
||
|
$ LDVL, VR, LDVR, WORK, -1, IERR )
|
||
|
LWKOPT = MAX( LWKOPT, N+INT( WORK( 1 ) ) )
|
||
|
CALL ZLAQZ0( 'S', JOBVL, JOBVR, N, 1, N, A, LDA, B, LDB,
|
||
|
$ ALPHA, BETA, VL, LDVL, VR, LDVR, WORK, -1,
|
||
|
$ RWORK, 0, IERR )
|
||
|
LWKOPT = MAX( LWKOPT, N+INT( WORK( 1 ) ) )
|
||
|
ELSE
|
||
|
CALL ZGGHD3( JOBVL, JOBVR, N, 1, N, A, LDA, B, LDB, VL,
|
||
|
$ LDVL, VR, LDVR, WORK, -1, IERR )
|
||
|
LWKOPT = MAX( LWKOPT, N+INT( WORK( 1 ) ) )
|
||
|
CALL ZLAQZ0( 'E', JOBVL, JOBVR, N, 1, N, A, LDA, B, LDB,
|
||
|
$ ALPHA, BETA, VL, LDVL, VR, LDVR, WORK, -1,
|
||
|
$ RWORK, 0, IERR )
|
||
|
LWKOPT = MAX( LWKOPT, N+INT( WORK( 1 ) ) )
|
||
|
END IF
|
||
|
WORK( 1 ) = DCMPLX( LWKOPT )
|
||
|
END IF
|
||
|
*
|
||
|
IF( INFO.NE.0 ) THEN
|
||
|
CALL XERBLA( 'ZGGEV3 ', -INFO )
|
||
|
RETURN
|
||
|
ELSE IF( LQUERY ) THEN
|
||
|
RETURN
|
||
|
END IF
|
||
|
*
|
||
|
* Quick return if possible
|
||
|
*
|
||
|
IF( N.EQ.0 )
|
||
|
$ RETURN
|
||
|
*
|
||
|
* Get machine constants
|
||
|
*
|
||
|
EPS = DLAMCH( 'E' )*DLAMCH( 'B' )
|
||
|
SMLNUM = DLAMCH( 'S' )
|
||
|
BIGNUM = ONE / SMLNUM
|
||
|
SMLNUM = SQRT( SMLNUM ) / EPS
|
||
|
BIGNUM = ONE / SMLNUM
|
||
|
*
|
||
|
* Scale A if max element outside range [SMLNUM,BIGNUM]
|
||
|
*
|
||
|
ANRM = ZLANGE( 'M', N, N, A, LDA, RWORK )
|
||
|
ILASCL = .FALSE.
|
||
|
IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
|
||
|
ANRMTO = SMLNUM
|
||
|
ILASCL = .TRUE.
|
||
|
ELSE IF( ANRM.GT.BIGNUM ) THEN
|
||
|
ANRMTO = BIGNUM
|
||
|
ILASCL = .TRUE.
|
||
|
END IF
|
||
|
IF( ILASCL )
|
||
|
$ CALL ZLASCL( 'G', 0, 0, ANRM, ANRMTO, N, N, A, LDA, IERR )
|
||
|
*
|
||
|
* Scale B if max element outside range [SMLNUM,BIGNUM]
|
||
|
*
|
||
|
BNRM = ZLANGE( 'M', N, N, B, LDB, RWORK )
|
||
|
ILBSCL = .FALSE.
|
||
|
IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
|
||
|
BNRMTO = SMLNUM
|
||
|
ILBSCL = .TRUE.
|
||
|
ELSE IF( BNRM.GT.BIGNUM ) THEN
|
||
|
BNRMTO = BIGNUM
|
||
|
ILBSCL = .TRUE.
|
||
|
END IF
|
||
|
IF( ILBSCL )
|
||
|
$ CALL ZLASCL( 'G', 0, 0, BNRM, BNRMTO, N, N, B, LDB, IERR )
|
||
|
*
|
||
|
* Permute the matrices A, B to isolate eigenvalues if possible
|
||
|
*
|
||
|
ILEFT = 1
|
||
|
IRIGHT = N + 1
|
||
|
IRWRK = IRIGHT + N
|
||
|
CALL ZGGBAL( 'P', N, A, LDA, B, LDB, ILO, IHI, RWORK( ILEFT ),
|
||
|
$ RWORK( IRIGHT ), RWORK( IRWRK ), IERR )
|
||
|
*
|
||
|
* Reduce B to triangular form (QR decomposition of B)
|
||
|
*
|
||
|
IROWS = IHI + 1 - ILO
|
||
|
IF( ILV ) THEN
|
||
|
ICOLS = N + 1 - ILO
|
||
|
ELSE
|
||
|
ICOLS = IROWS
|
||
|
END IF
|
||
|
ITAU = 1
|
||
|
IWRK = ITAU + IROWS
|
||
|
CALL ZGEQRF( IROWS, ICOLS, B( ILO, ILO ), LDB, WORK( ITAU ),
|
||
|
$ WORK( IWRK ), LWORK+1-IWRK, IERR )
|
||
|
*
|
||
|
* Apply the orthogonal transformation to matrix A
|
||
|
*
|
||
|
CALL ZUNMQR( 'L', 'C', IROWS, ICOLS, IROWS, B( ILO, ILO ), LDB,
|
||
|
$ WORK( ITAU ), A( ILO, ILO ), LDA, WORK( IWRK ),
|
||
|
$ LWORK+1-IWRK, IERR )
|
||
|
*
|
||
|
* Initialize VL
|
||
|
*
|
||
|
IF( ILVL ) THEN
|
||
|
CALL ZLASET( 'Full', N, N, CZERO, CONE, VL, LDVL )
|
||
|
IF( IROWS.GT.1 ) THEN
|
||
|
CALL ZLACPY( 'L', IROWS-1, IROWS-1, B( ILO+1, ILO ), LDB,
|
||
|
$ VL( ILO+1, ILO ), LDVL )
|
||
|
END IF
|
||
|
CALL ZUNGQR( IROWS, IROWS, IROWS, VL( ILO, ILO ), LDVL,
|
||
|
$ WORK( ITAU ), WORK( IWRK ), LWORK+1-IWRK, IERR )
|
||
|
END IF
|
||
|
*
|
||
|
* Initialize VR
|
||
|
*
|
||
|
IF( ILVR )
|
||
|
$ CALL ZLASET( 'Full', N, N, CZERO, CONE, VR, LDVR )
|
||
|
*
|
||
|
* Reduce to generalized Hessenberg form
|
||
|
*
|
||
|
IF( ILV ) THEN
|
||
|
*
|
||
|
* Eigenvectors requested -- work on whole matrix.
|
||
|
*
|
||
|
CALL ZGGHD3( JOBVL, JOBVR, N, ILO, IHI, A, LDA, B, LDB, VL,
|
||
|
$ LDVL, VR, LDVR, WORK( IWRK ), LWORK+1-IWRK, IERR )
|
||
|
ELSE
|
||
|
CALL ZGGHD3( 'N', 'N', IROWS, 1, IROWS, A( ILO, ILO ), LDA,
|
||
|
$ B( ILO, ILO ), LDB, VL, LDVL, VR, LDVR,
|
||
|
$ WORK( IWRK ), LWORK+1-IWRK, IERR )
|
||
|
END IF
|
||
|
*
|
||
|
* Perform QZ algorithm (Compute eigenvalues, and optionally, the
|
||
|
* Schur form and Schur vectors)
|
||
|
*
|
||
|
IWRK = ITAU
|
||
|
IF( ILV ) THEN
|
||
|
CHTEMP = 'S'
|
||
|
ELSE
|
||
|
CHTEMP = 'E'
|
||
|
END IF
|
||
|
CALL ZLAQZ0( CHTEMP, JOBVL, JOBVR, N, ILO, IHI, A, LDA, B, LDB,
|
||
|
$ ALPHA, BETA, VL, LDVL, VR, LDVR, WORK( IWRK ),
|
||
|
$ LWORK+1-IWRK, RWORK( IRWRK ), 0, IERR )
|
||
|
IF( IERR.NE.0 ) THEN
|
||
|
IF( IERR.GT.0 .AND. IERR.LE.N ) THEN
|
||
|
INFO = IERR
|
||
|
ELSE IF( IERR.GT.N .AND. IERR.LE.2*N ) THEN
|
||
|
INFO = IERR - N
|
||
|
ELSE
|
||
|
INFO = N + 1
|
||
|
END IF
|
||
|
GO TO 70
|
||
|
END IF
|
||
|
*
|
||
|
* Compute Eigenvectors
|
||
|
*
|
||
|
IF( ILV ) THEN
|
||
|
IF( ILVL ) THEN
|
||
|
IF( ILVR ) THEN
|
||
|
CHTEMP = 'B'
|
||
|
ELSE
|
||
|
CHTEMP = 'L'
|
||
|
END IF
|
||
|
ELSE
|
||
|
CHTEMP = 'R'
|
||
|
END IF
|
||
|
*
|
||
|
CALL ZTGEVC( CHTEMP, 'B', LDUMMA, N, A, LDA, B, LDB, VL, LDVL,
|
||
|
$ VR, LDVR, N, IN, WORK( IWRK ), RWORK( IRWRK ),
|
||
|
$ IERR )
|
||
|
IF( IERR.NE.0 ) THEN
|
||
|
INFO = N + 2
|
||
|
GO TO 70
|
||
|
END IF
|
||
|
*
|
||
|
* Undo balancing on VL and VR and normalization
|
||
|
*
|
||
|
IF( ILVL ) THEN
|
||
|
CALL ZGGBAK( 'P', 'L', N, ILO, IHI, RWORK( ILEFT ),
|
||
|
$ RWORK( IRIGHT ), N, VL, LDVL, IERR )
|
||
|
DO 30 JC = 1, N
|
||
|
TEMP = ZERO
|
||
|
DO 10 JR = 1, N
|
||
|
TEMP = MAX( TEMP, ABS1( VL( JR, JC ) ) )
|
||
|
10 CONTINUE
|
||
|
IF( TEMP.LT.SMLNUM )
|
||
|
$ GO TO 30
|
||
|
TEMP = ONE / TEMP
|
||
|
DO 20 JR = 1, N
|
||
|
VL( JR, JC ) = VL( JR, JC )*TEMP
|
||
|
20 CONTINUE
|
||
|
30 CONTINUE
|
||
|
END IF
|
||
|
IF( ILVR ) THEN
|
||
|
CALL ZGGBAK( 'P', 'R', N, ILO, IHI, RWORK( ILEFT ),
|
||
|
$ RWORK( IRIGHT ), N, VR, LDVR, IERR )
|
||
|
DO 60 JC = 1, N
|
||
|
TEMP = ZERO
|
||
|
DO 40 JR = 1, N
|
||
|
TEMP = MAX( TEMP, ABS1( VR( JR, JC ) ) )
|
||
|
40 CONTINUE
|
||
|
IF( TEMP.LT.SMLNUM )
|
||
|
$ GO TO 60
|
||
|
TEMP = ONE / TEMP
|
||
|
DO 50 JR = 1, N
|
||
|
VR( JR, JC ) = VR( JR, JC )*TEMP
|
||
|
50 CONTINUE
|
||
|
60 CONTINUE
|
||
|
END IF
|
||
|
END IF
|
||
|
*
|
||
|
* Undo scaling if necessary
|
||
|
*
|
||
|
70 CONTINUE
|
||
|
*
|
||
|
IF( ILASCL )
|
||
|
$ CALL ZLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHA, N, IERR )
|
||
|
*
|
||
|
IF( ILBSCL )
|
||
|
$ CALL ZLASCL( 'G', 0, 0, BNRMTO, BNRM, N, 1, BETA, N, IERR )
|
||
|
*
|
||
|
WORK( 1 ) = DCMPLX( LWKOPT )
|
||
|
RETURN
|
||
|
*
|
||
|
* End of ZGGEV3
|
||
|
*
|
||
|
END
|