You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
620 lines
20 KiB
620 lines
20 KiB
2 years ago
|
*> \brief <b> ZHEEVX_2STAGE computes the eigenvalues and, optionally, the left and/or right eigenvectors for HE matrices</b>
|
||
|
*
|
||
|
* @precisions fortran z -> s d c
|
||
|
*
|
||
|
* =========== DOCUMENTATION ===========
|
||
|
*
|
||
|
* Online html documentation available at
|
||
|
* http://www.netlib.org/lapack/explore-html/
|
||
|
*
|
||
|
*> \htmlonly
|
||
|
*> Download ZHEEVX_2STAGE + dependencies
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zheevx_2stage.f">
|
||
|
*> [TGZ]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zheevx_2stage.f">
|
||
|
*> [ZIP]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zheevx_2stage.f">
|
||
|
*> [TXT]</a>
|
||
|
*> \endhtmlonly
|
||
|
*
|
||
|
* Definition:
|
||
|
* ===========
|
||
|
*
|
||
|
* SUBROUTINE ZHEEVX_2STAGE( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU,
|
||
|
* IL, IU, ABSTOL, M, W, Z, LDZ, WORK,
|
||
|
* LWORK, RWORK, IWORK, IFAIL, INFO )
|
||
|
*
|
||
|
* IMPLICIT NONE
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
* CHARACTER JOBZ, RANGE, UPLO
|
||
|
* INTEGER IL, INFO, IU, LDA, LDZ, LWORK, M, N
|
||
|
* DOUBLE PRECISION ABSTOL, VL, VU
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
* INTEGER IFAIL( * ), IWORK( * )
|
||
|
* DOUBLE PRECISION RWORK( * ), W( * )
|
||
|
* COMPLEX*16 A( LDA, * ), WORK( * ), Z( LDZ, * )
|
||
|
* ..
|
||
|
*
|
||
|
*
|
||
|
*> \par Purpose:
|
||
|
* =============
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*> ZHEEVX_2STAGE computes selected eigenvalues and, optionally, eigenvectors
|
||
|
*> of a complex Hermitian matrix A using the 2stage technique for
|
||
|
*> the reduction to tridiagonal. Eigenvalues and eigenvectors can
|
||
|
*> be selected by specifying either a range of values or a range of
|
||
|
*> indices for the desired eigenvalues.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Arguments:
|
||
|
* ==========
|
||
|
*
|
||
|
*> \param[in] JOBZ
|
||
|
*> \verbatim
|
||
|
*> JOBZ is CHARACTER*1
|
||
|
*> = 'N': Compute eigenvalues only;
|
||
|
*> = 'V': Compute eigenvalues and eigenvectors.
|
||
|
*> Not available in this release.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] RANGE
|
||
|
*> \verbatim
|
||
|
*> RANGE is CHARACTER*1
|
||
|
*> = 'A': all eigenvalues will be found.
|
||
|
*> = 'V': all eigenvalues in the half-open interval (VL,VU]
|
||
|
*> will be found.
|
||
|
*> = 'I': the IL-th through IU-th eigenvalues will be found.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] UPLO
|
||
|
*> \verbatim
|
||
|
*> UPLO is CHARACTER*1
|
||
|
*> = 'U': Upper triangle of A is stored;
|
||
|
*> = 'L': Lower triangle of A is stored.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] N
|
||
|
*> \verbatim
|
||
|
*> N is INTEGER
|
||
|
*> The order of the matrix A. N >= 0.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] A
|
||
|
*> \verbatim
|
||
|
*> A is COMPLEX*16 array, dimension (LDA, N)
|
||
|
*> On entry, the Hermitian matrix A. If UPLO = 'U', the
|
||
|
*> leading N-by-N upper triangular part of A contains the
|
||
|
*> upper triangular part of the matrix A. If UPLO = 'L',
|
||
|
*> the leading N-by-N lower triangular part of A contains
|
||
|
*> the lower triangular part of the matrix A.
|
||
|
*> On exit, the lower triangle (if UPLO='L') or the upper
|
||
|
*> triangle (if UPLO='U') of A, including the diagonal, is
|
||
|
*> destroyed.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDA
|
||
|
*> \verbatim
|
||
|
*> LDA is INTEGER
|
||
|
*> The leading dimension of the array A. LDA >= max(1,N).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] VL
|
||
|
*> \verbatim
|
||
|
*> VL is DOUBLE PRECISION
|
||
|
*> If RANGE='V', the lower bound of the interval to
|
||
|
*> be searched for eigenvalues. VL < VU.
|
||
|
*> Not referenced if RANGE = 'A' or 'I'.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] VU
|
||
|
*> \verbatim
|
||
|
*> VU is DOUBLE PRECISION
|
||
|
*> If RANGE='V', the upper bound of the interval to
|
||
|
*> be searched for eigenvalues. VL < VU.
|
||
|
*> Not referenced if RANGE = 'A' or 'I'.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] IL
|
||
|
*> \verbatim
|
||
|
*> IL is INTEGER
|
||
|
*> If RANGE='I', the index of the
|
||
|
*> smallest eigenvalue to be returned.
|
||
|
*> 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
|
||
|
*> Not referenced if RANGE = 'A' or 'V'.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] IU
|
||
|
*> \verbatim
|
||
|
*> IU is INTEGER
|
||
|
*> If RANGE='I', the index of the
|
||
|
*> largest eigenvalue to be returned.
|
||
|
*> 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
|
||
|
*> Not referenced if RANGE = 'A' or 'V'.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] ABSTOL
|
||
|
*> \verbatim
|
||
|
*> ABSTOL is DOUBLE PRECISION
|
||
|
*> The absolute error tolerance for the eigenvalues.
|
||
|
*> An approximate eigenvalue is accepted as converged
|
||
|
*> when it is determined to lie in an interval [a,b]
|
||
|
*> of width less than or equal to
|
||
|
*>
|
||
|
*> ABSTOL + EPS * max( |a|,|b| ) ,
|
||
|
*>
|
||
|
*> where EPS is the machine precision. If ABSTOL is less than
|
||
|
*> or equal to zero, then EPS*|T| will be used in its place,
|
||
|
*> where |T| is the 1-norm of the tridiagonal matrix obtained
|
||
|
*> by reducing A to tridiagonal form.
|
||
|
*>
|
||
|
*> Eigenvalues will be computed most accurately when ABSTOL is
|
||
|
*> set to twice the underflow threshold 2*DLAMCH('S'), not zero.
|
||
|
*> If this routine returns with INFO>0, indicating that some
|
||
|
*> eigenvectors did not converge, try setting ABSTOL to
|
||
|
*> 2*DLAMCH('S').
|
||
|
*>
|
||
|
*> See "Computing Small Singular Values of Bidiagonal Matrices
|
||
|
*> with Guaranteed High Relative Accuracy," by Demmel and
|
||
|
*> Kahan, LAPACK Working Note #3.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] M
|
||
|
*> \verbatim
|
||
|
*> M is INTEGER
|
||
|
*> The total number of eigenvalues found. 0 <= M <= N.
|
||
|
*> If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] W
|
||
|
*> \verbatim
|
||
|
*> W is DOUBLE PRECISION array, dimension (N)
|
||
|
*> On normal exit, the first M elements contain the selected
|
||
|
*> eigenvalues in ascending order.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] Z
|
||
|
*> \verbatim
|
||
|
*> Z is COMPLEX*16 array, dimension (LDZ, max(1,M))
|
||
|
*> If JOBZ = 'V', then if INFO = 0, the first M columns of Z
|
||
|
*> contain the orthonormal eigenvectors of the matrix A
|
||
|
*> corresponding to the selected eigenvalues, with the i-th
|
||
|
*> column of Z holding the eigenvector associated with W(i).
|
||
|
*> If an eigenvector fails to converge, then that column of Z
|
||
|
*> contains the latest approximation to the eigenvector, and the
|
||
|
*> index of the eigenvector is returned in IFAIL.
|
||
|
*> If JOBZ = 'N', then Z is not referenced.
|
||
|
*> Note: the user must ensure that at least max(1,M) columns are
|
||
|
*> supplied in the array Z; if RANGE = 'V', the exact value of M
|
||
|
*> is not known in advance and an upper bound must be used.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDZ
|
||
|
*> \verbatim
|
||
|
*> LDZ is INTEGER
|
||
|
*> The leading dimension of the array Z. LDZ >= 1, and if
|
||
|
*> JOBZ = 'V', LDZ >= max(1,N).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] WORK
|
||
|
*> \verbatim
|
||
|
*> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
|
||
|
*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LWORK
|
||
|
*> \verbatim
|
||
|
*> LWORK is INTEGER
|
||
|
*> The length of the array WORK. LWORK >= 1, when N <= 1;
|
||
|
*> otherwise
|
||
|
*> If JOBZ = 'N' and N > 1, LWORK must be queried.
|
||
|
*> LWORK = MAX(1, 8*N, dimension) where
|
||
|
*> dimension = max(stage1,stage2) + (KD+1)*N + N
|
||
|
*> = N*KD + N*max(KD+1,FACTOPTNB)
|
||
|
*> + max(2*KD*KD, KD*NTHREADS)
|
||
|
*> + (KD+1)*N + N
|
||
|
*> where KD is the blocking size of the reduction,
|
||
|
*> FACTOPTNB is the blocking used by the QR or LQ
|
||
|
*> algorithm, usually FACTOPTNB=128 is a good choice
|
||
|
*> NTHREADS is the number of threads used when
|
||
|
*> openMP compilation is enabled, otherwise =1.
|
||
|
*> If JOBZ = 'V' and N > 1, LWORK must be queried. Not yet available
|
||
|
*>
|
||
|
*> If LWORK = -1, then a workspace query is assumed; the routine
|
||
|
*> only calculates the optimal size of the WORK array, returns
|
||
|
*> this value as the first entry of the WORK array, and no error
|
||
|
*> message related to LWORK is issued by XERBLA.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] RWORK
|
||
|
*> \verbatim
|
||
|
*> RWORK is DOUBLE PRECISION array, dimension (7*N)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] IWORK
|
||
|
*> \verbatim
|
||
|
*> IWORK is INTEGER array, dimension (5*N)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] IFAIL
|
||
|
*> \verbatim
|
||
|
*> IFAIL is INTEGER array, dimension (N)
|
||
|
*> If JOBZ = 'V', then if INFO = 0, the first M elements of
|
||
|
*> IFAIL are zero. If INFO > 0, then IFAIL contains the
|
||
|
*> indices of the eigenvectors that failed to converge.
|
||
|
*> If JOBZ = 'N', then IFAIL is not referenced.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] INFO
|
||
|
*> \verbatim
|
||
|
*> INFO is INTEGER
|
||
|
*> = 0: successful exit
|
||
|
*> < 0: if INFO = -i, the i-th argument had an illegal value
|
||
|
*> > 0: if INFO = i, then i eigenvectors failed to converge.
|
||
|
*> Their indices are stored in array IFAIL.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Authors:
|
||
|
* ========
|
||
|
*
|
||
|
*> \author Univ. of Tennessee
|
||
|
*> \author Univ. of California Berkeley
|
||
|
*> \author Univ. of Colorado Denver
|
||
|
*> \author NAG Ltd.
|
||
|
*
|
||
|
*> \ingroup complex16HEeigen
|
||
|
*
|
||
|
*> \par Further Details:
|
||
|
* =====================
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*> All details about the 2stage techniques are available in:
|
||
|
*>
|
||
|
*> Azzam Haidar, Hatem Ltaief, and Jack Dongarra.
|
||
|
*> Parallel reduction to condensed forms for symmetric eigenvalue problems
|
||
|
*> using aggregated fine-grained and memory-aware kernels. In Proceedings
|
||
|
*> of 2011 International Conference for High Performance Computing,
|
||
|
*> Networking, Storage and Analysis (SC '11), New York, NY, USA,
|
||
|
*> Article 8 , 11 pages.
|
||
|
*> http://doi.acm.org/10.1145/2063384.2063394
|
||
|
*>
|
||
|
*> A. Haidar, J. Kurzak, P. Luszczek, 2013.
|
||
|
*> An improved parallel singular value algorithm and its implementation
|
||
|
*> for multicore hardware, In Proceedings of 2013 International Conference
|
||
|
*> for High Performance Computing, Networking, Storage and Analysis (SC '13).
|
||
|
*> Denver, Colorado, USA, 2013.
|
||
|
*> Article 90, 12 pages.
|
||
|
*> http://doi.acm.org/10.1145/2503210.2503292
|
||
|
*>
|
||
|
*> A. Haidar, R. Solca, S. Tomov, T. Schulthess and J. Dongarra.
|
||
|
*> A novel hybrid CPU-GPU generalized eigensolver for electronic structure
|
||
|
*> calculations based on fine-grained memory aware tasks.
|
||
|
*> International Journal of High Performance Computing Applications.
|
||
|
*> Volume 28 Issue 2, Pages 196-209, May 2014.
|
||
|
*> http://hpc.sagepub.com/content/28/2/196
|
||
|
*>
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* =====================================================================
|
||
|
SUBROUTINE ZHEEVX_2STAGE( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU,
|
||
|
$ IL, IU, ABSTOL, M, W, Z, LDZ, WORK,
|
||
|
$ LWORK, RWORK, IWORK, IFAIL, INFO )
|
||
|
*
|
||
|
IMPLICIT NONE
|
||
|
*
|
||
|
* -- LAPACK driver routine --
|
||
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
CHARACTER JOBZ, RANGE, UPLO
|
||
|
INTEGER IL, INFO, IU, LDA, LDZ, LWORK, M, N
|
||
|
DOUBLE PRECISION ABSTOL, VL, VU
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
INTEGER IFAIL( * ), IWORK( * )
|
||
|
DOUBLE PRECISION RWORK( * ), W( * )
|
||
|
COMPLEX*16 A( LDA, * ), WORK( * ), Z( LDZ, * )
|
||
|
* ..
|
||
|
*
|
||
|
* =====================================================================
|
||
|
*
|
||
|
* .. Parameters ..
|
||
|
DOUBLE PRECISION ZERO, ONE
|
||
|
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
|
||
|
COMPLEX*16 CONE
|
||
|
PARAMETER ( CONE = ( 1.0D+0, 0.0D+0 ) )
|
||
|
* ..
|
||
|
* .. Local Scalars ..
|
||
|
LOGICAL ALLEIG, INDEIG, LOWER, LQUERY, TEST, VALEIG,
|
||
|
$ WANTZ
|
||
|
CHARACTER ORDER
|
||
|
INTEGER I, IINFO, IMAX, INDD, INDE, INDEE, INDIBL,
|
||
|
$ INDISP, INDIWK, INDRWK, INDTAU, INDWRK, ISCALE,
|
||
|
$ ITMP1, J, JJ, LLWORK,
|
||
|
$ NSPLIT, LWMIN, LHTRD, LWTRD, KD, IB, INDHOUS
|
||
|
DOUBLE PRECISION ABSTLL, ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN,
|
||
|
$ SIGMA, SMLNUM, TMP1, VLL, VUU
|
||
|
* ..
|
||
|
* .. External Functions ..
|
||
|
LOGICAL LSAME
|
||
|
INTEGER ILAENV2STAGE
|
||
|
DOUBLE PRECISION DLAMCH, ZLANHE
|
||
|
EXTERNAL LSAME, DLAMCH, ZLANHE, ILAENV2STAGE
|
||
|
* ..
|
||
|
* .. External Subroutines ..
|
||
|
EXTERNAL DCOPY, DSCAL, DSTEBZ, DSTERF, XERBLA, ZDSCAL,
|
||
|
$ ZLACPY, ZSTEIN, ZSTEQR, ZSWAP, ZUNGTR, ZUNMTR,
|
||
|
$ ZHETRD_2STAGE
|
||
|
* ..
|
||
|
* .. Intrinsic Functions ..
|
||
|
INTRINSIC DBLE, MAX, MIN, SQRT
|
||
|
* ..
|
||
|
* .. Executable Statements ..
|
||
|
*
|
||
|
* Test the input parameters.
|
||
|
*
|
||
|
LOWER = LSAME( UPLO, 'L' )
|
||
|
WANTZ = LSAME( JOBZ, 'V' )
|
||
|
ALLEIG = LSAME( RANGE, 'A' )
|
||
|
VALEIG = LSAME( RANGE, 'V' )
|
||
|
INDEIG = LSAME( RANGE, 'I' )
|
||
|
LQUERY = ( LWORK.EQ.-1 )
|
||
|
*
|
||
|
INFO = 0
|
||
|
IF( .NOT.( LSAME( JOBZ, 'N' ) ) ) THEN
|
||
|
INFO = -1
|
||
|
ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
|
||
|
INFO = -2
|
||
|
ELSE IF( .NOT.( LOWER .OR. LSAME( UPLO, 'U' ) ) ) THEN
|
||
|
INFO = -3
|
||
|
ELSE IF( N.LT.0 ) THEN
|
||
|
INFO = -4
|
||
|
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
|
||
|
INFO = -6
|
||
|
ELSE
|
||
|
IF( VALEIG ) THEN
|
||
|
IF( N.GT.0 .AND. VU.LE.VL )
|
||
|
$ INFO = -8
|
||
|
ELSE IF( INDEIG ) THEN
|
||
|
IF( IL.LT.1 .OR. IL.GT.MAX( 1, N ) ) THEN
|
||
|
INFO = -9
|
||
|
ELSE IF( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
|
||
|
INFO = -10
|
||
|
END IF
|
||
|
END IF
|
||
|
END IF
|
||
|
IF( INFO.EQ.0 ) THEN
|
||
|
IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
|
||
|
INFO = -15
|
||
|
END IF
|
||
|
END IF
|
||
|
*
|
||
|
IF( INFO.EQ.0 ) THEN
|
||
|
IF( N.LE.1 ) THEN
|
||
|
LWMIN = 1
|
||
|
WORK( 1 ) = LWMIN
|
||
|
ELSE
|
||
|
KD = ILAENV2STAGE( 1, 'ZHETRD_2STAGE', JOBZ,
|
||
|
$ N, -1, -1, -1 )
|
||
|
IB = ILAENV2STAGE( 2, 'ZHETRD_2STAGE', JOBZ,
|
||
|
$ N, KD, -1, -1 )
|
||
|
LHTRD = ILAENV2STAGE( 3, 'ZHETRD_2STAGE', JOBZ,
|
||
|
$ N, KD, IB, -1 )
|
||
|
LWTRD = ILAENV2STAGE( 4, 'ZHETRD_2STAGE', JOBZ,
|
||
|
$ N, KD, IB, -1 )
|
||
|
LWMIN = N + LHTRD + LWTRD
|
||
|
WORK( 1 ) = LWMIN
|
||
|
END IF
|
||
|
*
|
||
|
IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY )
|
||
|
$ INFO = -17
|
||
|
END IF
|
||
|
*
|
||
|
IF( INFO.NE.0 ) THEN
|
||
|
CALL XERBLA( 'ZHEEVX_2STAGE', -INFO )
|
||
|
RETURN
|
||
|
ELSE IF( LQUERY ) THEN
|
||
|
RETURN
|
||
|
END IF
|
||
|
*
|
||
|
* Quick return if possible
|
||
|
*
|
||
|
M = 0
|
||
|
IF( N.EQ.0 ) THEN
|
||
|
RETURN
|
||
|
END IF
|
||
|
*
|
||
|
IF( N.EQ.1 ) THEN
|
||
|
IF( ALLEIG .OR. INDEIG ) THEN
|
||
|
M = 1
|
||
|
W( 1 ) = DBLE( A( 1, 1 ) )
|
||
|
ELSE IF( VALEIG ) THEN
|
||
|
IF( VL.LT.DBLE( A( 1, 1 ) ) .AND. VU.GE.DBLE( A( 1, 1 ) ) )
|
||
|
$ THEN
|
||
|
M = 1
|
||
|
W( 1 ) = DBLE( A( 1, 1 ) )
|
||
|
END IF
|
||
|
END IF
|
||
|
IF( WANTZ )
|
||
|
$ Z( 1, 1 ) = CONE
|
||
|
RETURN
|
||
|
END IF
|
||
|
*
|
||
|
* Get machine constants.
|
||
|
*
|
||
|
SAFMIN = DLAMCH( 'Safe minimum' )
|
||
|
EPS = DLAMCH( 'Precision' )
|
||
|
SMLNUM = SAFMIN / EPS
|
||
|
BIGNUM = ONE / SMLNUM
|
||
|
RMIN = SQRT( SMLNUM )
|
||
|
RMAX = MIN( SQRT( BIGNUM ), ONE / SQRT( SQRT( SAFMIN ) ) )
|
||
|
*
|
||
|
* Scale matrix to allowable range, if necessary.
|
||
|
*
|
||
|
ISCALE = 0
|
||
|
ABSTLL = ABSTOL
|
||
|
IF( VALEIG ) THEN
|
||
|
VLL = VL
|
||
|
VUU = VU
|
||
|
END IF
|
||
|
ANRM = ZLANHE( 'M', UPLO, N, A, LDA, RWORK )
|
||
|
IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
|
||
|
ISCALE = 1
|
||
|
SIGMA = RMIN / ANRM
|
||
|
ELSE IF( ANRM.GT.RMAX ) THEN
|
||
|
ISCALE = 1
|
||
|
SIGMA = RMAX / ANRM
|
||
|
END IF
|
||
|
IF( ISCALE.EQ.1 ) THEN
|
||
|
IF( LOWER ) THEN
|
||
|
DO 10 J = 1, N
|
||
|
CALL ZDSCAL( N-J+1, SIGMA, A( J, J ), 1 )
|
||
|
10 CONTINUE
|
||
|
ELSE
|
||
|
DO 20 J = 1, N
|
||
|
CALL ZDSCAL( J, SIGMA, A( 1, J ), 1 )
|
||
|
20 CONTINUE
|
||
|
END IF
|
||
|
IF( ABSTOL.GT.0 )
|
||
|
$ ABSTLL = ABSTOL*SIGMA
|
||
|
IF( VALEIG ) THEN
|
||
|
VLL = VL*SIGMA
|
||
|
VUU = VU*SIGMA
|
||
|
END IF
|
||
|
END IF
|
||
|
*
|
||
|
* Call ZHETRD_2STAGE to reduce Hermitian matrix to tridiagonal form.
|
||
|
*
|
||
|
INDD = 1
|
||
|
INDE = INDD + N
|
||
|
INDRWK = INDE + N
|
||
|
INDTAU = 1
|
||
|
INDHOUS = INDTAU + N
|
||
|
INDWRK = INDHOUS + LHTRD
|
||
|
LLWORK = LWORK - INDWRK + 1
|
||
|
*
|
||
|
CALL ZHETRD_2STAGE( JOBZ, UPLO, N, A, LDA, RWORK( INDD ),
|
||
|
$ RWORK( INDE ), WORK( INDTAU ),
|
||
|
$ WORK( INDHOUS ), LHTRD, WORK( INDWRK ),
|
||
|
$ LLWORK, IINFO )
|
||
|
*
|
||
|
* If all eigenvalues are desired and ABSTOL is less than or equal to
|
||
|
* zero, then call DSTERF or ZUNGTR and ZSTEQR. If this fails for
|
||
|
* some eigenvalue, then try DSTEBZ.
|
||
|
*
|
||
|
TEST = .FALSE.
|
||
|
IF( INDEIG ) THEN
|
||
|
IF( IL.EQ.1 .AND. IU.EQ.N ) THEN
|
||
|
TEST = .TRUE.
|
||
|
END IF
|
||
|
END IF
|
||
|
IF( ( ALLEIG .OR. TEST ) .AND. ( ABSTOL.LE.ZERO ) ) THEN
|
||
|
CALL DCOPY( N, RWORK( INDD ), 1, W, 1 )
|
||
|
INDEE = INDRWK + 2*N
|
||
|
IF( .NOT.WANTZ ) THEN
|
||
|
CALL DCOPY( N-1, RWORK( INDE ), 1, RWORK( INDEE ), 1 )
|
||
|
CALL DSTERF( N, W, RWORK( INDEE ), INFO )
|
||
|
ELSE
|
||
|
CALL ZLACPY( 'A', N, N, A, LDA, Z, LDZ )
|
||
|
CALL ZUNGTR( UPLO, N, Z, LDZ, WORK( INDTAU ),
|
||
|
$ WORK( INDWRK ), LLWORK, IINFO )
|
||
|
CALL DCOPY( N-1, RWORK( INDE ), 1, RWORK( INDEE ), 1 )
|
||
|
CALL ZSTEQR( JOBZ, N, W, RWORK( INDEE ), Z, LDZ,
|
||
|
$ RWORK( INDRWK ), INFO )
|
||
|
IF( INFO.EQ.0 ) THEN
|
||
|
DO 30 I = 1, N
|
||
|
IFAIL( I ) = 0
|
||
|
30 CONTINUE
|
||
|
END IF
|
||
|
END IF
|
||
|
IF( INFO.EQ.0 ) THEN
|
||
|
M = N
|
||
|
GO TO 40
|
||
|
END IF
|
||
|
INFO = 0
|
||
|
END IF
|
||
|
*
|
||
|
* Otherwise, call DSTEBZ and, if eigenvectors are desired, ZSTEIN.
|
||
|
*
|
||
|
IF( WANTZ ) THEN
|
||
|
ORDER = 'B'
|
||
|
ELSE
|
||
|
ORDER = 'E'
|
||
|
END IF
|
||
|
INDIBL = 1
|
||
|
INDISP = INDIBL + N
|
||
|
INDIWK = INDISP + N
|
||
|
CALL DSTEBZ( RANGE, ORDER, N, VLL, VUU, IL, IU, ABSTLL,
|
||
|
$ RWORK( INDD ), RWORK( INDE ), M, NSPLIT, W,
|
||
|
$ IWORK( INDIBL ), IWORK( INDISP ), RWORK( INDRWK ),
|
||
|
$ IWORK( INDIWK ), INFO )
|
||
|
*
|
||
|
IF( WANTZ ) THEN
|
||
|
CALL ZSTEIN( N, RWORK( INDD ), RWORK( INDE ), M, W,
|
||
|
$ IWORK( INDIBL ), IWORK( INDISP ), Z, LDZ,
|
||
|
$ RWORK( INDRWK ), IWORK( INDIWK ), IFAIL, INFO )
|
||
|
*
|
||
|
* Apply unitary matrix used in reduction to tridiagonal
|
||
|
* form to eigenvectors returned by ZSTEIN.
|
||
|
*
|
||
|
CALL ZUNMTR( 'L', UPLO, 'N', N, M, A, LDA, WORK( INDTAU ), Z,
|
||
|
$ LDZ, WORK( INDWRK ), LLWORK, IINFO )
|
||
|
END IF
|
||
|
*
|
||
|
* If matrix was scaled, then rescale eigenvalues appropriately.
|
||
|
*
|
||
|
40 CONTINUE
|
||
|
IF( ISCALE.EQ.1 ) THEN
|
||
|
IF( INFO.EQ.0 ) THEN
|
||
|
IMAX = M
|
||
|
ELSE
|
||
|
IMAX = INFO - 1
|
||
|
END IF
|
||
|
CALL DSCAL( IMAX, ONE / SIGMA, W, 1 )
|
||
|
END IF
|
||
|
*
|
||
|
* If eigenvalues are not in order, then sort them, along with
|
||
|
* eigenvectors.
|
||
|
*
|
||
|
IF( WANTZ ) THEN
|
||
|
DO 60 J = 1, M - 1
|
||
|
I = 0
|
||
|
TMP1 = W( J )
|
||
|
DO 50 JJ = J + 1, M
|
||
|
IF( W( JJ ).LT.TMP1 ) THEN
|
||
|
I = JJ
|
||
|
TMP1 = W( JJ )
|
||
|
END IF
|
||
|
50 CONTINUE
|
||
|
*
|
||
|
IF( I.NE.0 ) THEN
|
||
|
ITMP1 = IWORK( INDIBL+I-1 )
|
||
|
W( I ) = W( J )
|
||
|
IWORK( INDIBL+I-1 ) = IWORK( INDIBL+J-1 )
|
||
|
W( J ) = TMP1
|
||
|
IWORK( INDIBL+J-1 ) = ITMP1
|
||
|
CALL ZSWAP( N, Z( 1, I ), 1, Z( 1, J ), 1 )
|
||
|
IF( INFO.NE.0 ) THEN
|
||
|
ITMP1 = IFAIL( I )
|
||
|
IFAIL( I ) = IFAIL( J )
|
||
|
IFAIL( J ) = ITMP1
|
||
|
END IF
|
||
|
END IF
|
||
|
60 CONTINUE
|
||
|
END IF
|
||
|
*
|
||
|
* Set WORK(1) to optimal complex workspace size.
|
||
|
*
|
||
|
WORK( 1 ) = LWMIN
|
||
|
*
|
||
|
RETURN
|
||
|
*
|
||
|
* End of ZHEEVX_2STAGE
|
||
|
*
|
||
|
END
|