You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
330 lines
11 KiB
330 lines
11 KiB
2 years ago
|
*> \brief \b ZHEGST
|
||
|
*
|
||
|
* =========== DOCUMENTATION ===========
|
||
|
*
|
||
|
* Online html documentation available at
|
||
|
* http://www.netlib.org/lapack/explore-html/
|
||
|
*
|
||
|
*> \htmlonly
|
||
|
*> Download ZHEGST + dependencies
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhegst.f">
|
||
|
*> [TGZ]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhegst.f">
|
||
|
*> [ZIP]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhegst.f">
|
||
|
*> [TXT]</a>
|
||
|
*> \endhtmlonly
|
||
|
*
|
||
|
* Definition:
|
||
|
* ===========
|
||
|
*
|
||
|
* SUBROUTINE ZHEGST( ITYPE, UPLO, N, A, LDA, B, LDB, INFO )
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
* CHARACTER UPLO
|
||
|
* INTEGER INFO, ITYPE, LDA, LDB, N
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
* COMPLEX*16 A( LDA, * ), B( LDB, * )
|
||
|
* ..
|
||
|
*
|
||
|
*
|
||
|
*> \par Purpose:
|
||
|
* =============
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*> ZHEGST reduces a complex Hermitian-definite generalized
|
||
|
*> eigenproblem to standard form.
|
||
|
*>
|
||
|
*> If ITYPE = 1, the problem is A*x = lambda*B*x,
|
||
|
*> and A is overwritten by inv(U**H)*A*inv(U) or inv(L)*A*inv(L**H)
|
||
|
*>
|
||
|
*> If ITYPE = 2 or 3, the problem is A*B*x = lambda*x or
|
||
|
*> B*A*x = lambda*x, and A is overwritten by U*A*U**H or L**H*A*L.
|
||
|
*>
|
||
|
*> B must have been previously factorized as U**H*U or L*L**H by ZPOTRF.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Arguments:
|
||
|
* ==========
|
||
|
*
|
||
|
*> \param[in] ITYPE
|
||
|
*> \verbatim
|
||
|
*> ITYPE is INTEGER
|
||
|
*> = 1: compute inv(U**H)*A*inv(U) or inv(L)*A*inv(L**H);
|
||
|
*> = 2 or 3: compute U*A*U**H or L**H*A*L.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] UPLO
|
||
|
*> \verbatim
|
||
|
*> UPLO is CHARACTER*1
|
||
|
*> = 'U': Upper triangle of A is stored and B is factored as
|
||
|
*> U**H*U;
|
||
|
*> = 'L': Lower triangle of A is stored and B is factored as
|
||
|
*> L*L**H.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] N
|
||
|
*> \verbatim
|
||
|
*> N is INTEGER
|
||
|
*> The order of the matrices A and B. N >= 0.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] A
|
||
|
*> \verbatim
|
||
|
*> A is COMPLEX*16 array, dimension (LDA,N)
|
||
|
*> On entry, the Hermitian matrix A. If UPLO = 'U', the leading
|
||
|
*> N-by-N upper triangular part of A contains the upper
|
||
|
*> triangular part of the matrix A, and the strictly lower
|
||
|
*> triangular part of A is not referenced. If UPLO = 'L', the
|
||
|
*> leading N-by-N lower triangular part of A contains the lower
|
||
|
*> triangular part of the matrix A, and the strictly upper
|
||
|
*> triangular part of A is not referenced.
|
||
|
*>
|
||
|
*> On exit, if INFO = 0, the transformed matrix, stored in the
|
||
|
*> same format as A.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDA
|
||
|
*> \verbatim
|
||
|
*> LDA is INTEGER
|
||
|
*> The leading dimension of the array A. LDA >= max(1,N).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] B
|
||
|
*> \verbatim
|
||
|
*> B is COMPLEX*16 array, dimension (LDB,N)
|
||
|
*> The triangular factor from the Cholesky factorization of B,
|
||
|
*> as returned by ZPOTRF.
|
||
|
*> B is modified by the routine but restored on exit.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDB
|
||
|
*> \verbatim
|
||
|
*> LDB is INTEGER
|
||
|
*> The leading dimension of the array B. LDB >= max(1,N).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] INFO
|
||
|
*> \verbatim
|
||
|
*> INFO is INTEGER
|
||
|
*> = 0: successful exit
|
||
|
*> < 0: if INFO = -i, the i-th argument had an illegal value
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Authors:
|
||
|
* ========
|
||
|
*
|
||
|
*> \author Univ. of Tennessee
|
||
|
*> \author Univ. of California Berkeley
|
||
|
*> \author Univ. of Colorado Denver
|
||
|
*> \author NAG Ltd.
|
||
|
*
|
||
|
*> \ingroup complex16HEcomputational
|
||
|
*
|
||
|
* =====================================================================
|
||
|
SUBROUTINE ZHEGST( ITYPE, UPLO, N, A, LDA, B, LDB, INFO )
|
||
|
*
|
||
|
* -- LAPACK computational routine --
|
||
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
CHARACTER UPLO
|
||
|
INTEGER INFO, ITYPE, LDA, LDB, N
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
COMPLEX*16 A( LDA, * ), B( LDB, * )
|
||
|
* ..
|
||
|
*
|
||
|
* =====================================================================
|
||
|
*
|
||
|
* .. Parameters ..
|
||
|
DOUBLE PRECISION ONE
|
||
|
PARAMETER ( ONE = 1.0D+0 )
|
||
|
COMPLEX*16 CONE, HALF
|
||
|
PARAMETER ( CONE = ( 1.0D+0, 0.0D+0 ),
|
||
|
$ HALF = ( 0.5D+0, 0.0D+0 ) )
|
||
|
* ..
|
||
|
* .. Local Scalars ..
|
||
|
LOGICAL UPPER
|
||
|
INTEGER K, KB, NB
|
||
|
* ..
|
||
|
* .. External Subroutines ..
|
||
|
EXTERNAL XERBLA, ZHEGS2, ZHEMM, ZHER2K, ZTRMM, ZTRSM
|
||
|
* ..
|
||
|
* .. Intrinsic Functions ..
|
||
|
INTRINSIC MAX, MIN
|
||
|
* ..
|
||
|
* .. External Functions ..
|
||
|
LOGICAL LSAME
|
||
|
INTEGER ILAENV
|
||
|
EXTERNAL LSAME, ILAENV
|
||
|
* ..
|
||
|
* .. Executable Statements ..
|
||
|
*
|
||
|
* Test the input parameters.
|
||
|
*
|
||
|
INFO = 0
|
||
|
UPPER = LSAME( UPLO, 'U' )
|
||
|
IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
|
||
|
INFO = -1
|
||
|
ELSE IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
|
||
|
INFO = -2
|
||
|
ELSE IF( N.LT.0 ) THEN
|
||
|
INFO = -3
|
||
|
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
|
||
|
INFO = -5
|
||
|
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
|
||
|
INFO = -7
|
||
|
END IF
|
||
|
IF( INFO.NE.0 ) THEN
|
||
|
CALL XERBLA( 'ZHEGST', -INFO )
|
||
|
RETURN
|
||
|
END IF
|
||
|
*
|
||
|
* Quick return if possible
|
||
|
*
|
||
|
IF( N.EQ.0 )
|
||
|
$ RETURN
|
||
|
*
|
||
|
* Determine the block size for this environment.
|
||
|
*
|
||
|
NB = ILAENV( 1, 'ZHEGST', UPLO, N, -1, -1, -1 )
|
||
|
*
|
||
|
IF( NB.LE.1 .OR. NB.GE.N ) THEN
|
||
|
*
|
||
|
* Use unblocked code
|
||
|
*
|
||
|
CALL ZHEGS2( ITYPE, UPLO, N, A, LDA, B, LDB, INFO )
|
||
|
ELSE
|
||
|
*
|
||
|
* Use blocked code
|
||
|
*
|
||
|
IF( ITYPE.EQ.1 ) THEN
|
||
|
IF( UPPER ) THEN
|
||
|
*
|
||
|
* Compute inv(U**H)*A*inv(U)
|
||
|
*
|
||
|
DO 10 K = 1, N, NB
|
||
|
KB = MIN( N-K+1, NB )
|
||
|
*
|
||
|
* Update the upper triangle of A(k:n,k:n)
|
||
|
*
|
||
|
CALL ZHEGS2( ITYPE, UPLO, KB, A( K, K ), LDA,
|
||
|
$ B( K, K ), LDB, INFO )
|
||
|
IF( K+KB.LE.N ) THEN
|
||
|
CALL ZTRSM( 'Left', UPLO, 'Conjugate transpose',
|
||
|
$ 'Non-unit', KB, N-K-KB+1, CONE,
|
||
|
$ B( K, K ), LDB, A( K, K+KB ), LDA )
|
||
|
CALL ZHEMM( 'Left', UPLO, KB, N-K-KB+1, -HALF,
|
||
|
$ A( K, K ), LDA, B( K, K+KB ), LDB,
|
||
|
$ CONE, A( K, K+KB ), LDA )
|
||
|
CALL ZHER2K( UPLO, 'Conjugate transpose', N-K-KB+1,
|
||
|
$ KB, -CONE, A( K, K+KB ), LDA,
|
||
|
$ B( K, K+KB ), LDB, ONE,
|
||
|
$ A( K+KB, K+KB ), LDA )
|
||
|
CALL ZHEMM( 'Left', UPLO, KB, N-K-KB+1, -HALF,
|
||
|
$ A( K, K ), LDA, B( K, K+KB ), LDB,
|
||
|
$ CONE, A( K, K+KB ), LDA )
|
||
|
CALL ZTRSM( 'Right', UPLO, 'No transpose',
|
||
|
$ 'Non-unit', KB, N-K-KB+1, CONE,
|
||
|
$ B( K+KB, K+KB ), LDB, A( K, K+KB ),
|
||
|
$ LDA )
|
||
|
END IF
|
||
|
10 CONTINUE
|
||
|
ELSE
|
||
|
*
|
||
|
* Compute inv(L)*A*inv(L**H)
|
||
|
*
|
||
|
DO 20 K = 1, N, NB
|
||
|
KB = MIN( N-K+1, NB )
|
||
|
*
|
||
|
* Update the lower triangle of A(k:n,k:n)
|
||
|
*
|
||
|
CALL ZHEGS2( ITYPE, UPLO, KB, A( K, K ), LDA,
|
||
|
$ B( K, K ), LDB, INFO )
|
||
|
IF( K+KB.LE.N ) THEN
|
||
|
CALL ZTRSM( 'Right', UPLO, 'Conjugate transpose',
|
||
|
$ 'Non-unit', N-K-KB+1, KB, CONE,
|
||
|
$ B( K, K ), LDB, A( K+KB, K ), LDA )
|
||
|
CALL ZHEMM( 'Right', UPLO, N-K-KB+1, KB, -HALF,
|
||
|
$ A( K, K ), LDA, B( K+KB, K ), LDB,
|
||
|
$ CONE, A( K+KB, K ), LDA )
|
||
|
CALL ZHER2K( UPLO, 'No transpose', N-K-KB+1, KB,
|
||
|
$ -CONE, A( K+KB, K ), LDA,
|
||
|
$ B( K+KB, K ), LDB, ONE,
|
||
|
$ A( K+KB, K+KB ), LDA )
|
||
|
CALL ZHEMM( 'Right', UPLO, N-K-KB+1, KB, -HALF,
|
||
|
$ A( K, K ), LDA, B( K+KB, K ), LDB,
|
||
|
$ CONE, A( K+KB, K ), LDA )
|
||
|
CALL ZTRSM( 'Left', UPLO, 'No transpose',
|
||
|
$ 'Non-unit', N-K-KB+1, KB, CONE,
|
||
|
$ B( K+KB, K+KB ), LDB, A( K+KB, K ),
|
||
|
$ LDA )
|
||
|
END IF
|
||
|
20 CONTINUE
|
||
|
END IF
|
||
|
ELSE
|
||
|
IF( UPPER ) THEN
|
||
|
*
|
||
|
* Compute U*A*U**H
|
||
|
*
|
||
|
DO 30 K = 1, N, NB
|
||
|
KB = MIN( N-K+1, NB )
|
||
|
*
|
||
|
* Update the upper triangle of A(1:k+kb-1,1:k+kb-1)
|
||
|
*
|
||
|
CALL ZTRMM( 'Left', UPLO, 'No transpose', 'Non-unit',
|
||
|
$ K-1, KB, CONE, B, LDB, A( 1, K ), LDA )
|
||
|
CALL ZHEMM( 'Right', UPLO, K-1, KB, HALF, A( K, K ),
|
||
|
$ LDA, B( 1, K ), LDB, CONE, A( 1, K ),
|
||
|
$ LDA )
|
||
|
CALL ZHER2K( UPLO, 'No transpose', K-1, KB, CONE,
|
||
|
$ A( 1, K ), LDA, B( 1, K ), LDB, ONE, A,
|
||
|
$ LDA )
|
||
|
CALL ZHEMM( 'Right', UPLO, K-1, KB, HALF, A( K, K ),
|
||
|
$ LDA, B( 1, K ), LDB, CONE, A( 1, K ),
|
||
|
$ LDA )
|
||
|
CALL ZTRMM( 'Right', UPLO, 'Conjugate transpose',
|
||
|
$ 'Non-unit', K-1, KB, CONE, B( K, K ), LDB,
|
||
|
$ A( 1, K ), LDA )
|
||
|
CALL ZHEGS2( ITYPE, UPLO, KB, A( K, K ), LDA,
|
||
|
$ B( K, K ), LDB, INFO )
|
||
|
30 CONTINUE
|
||
|
ELSE
|
||
|
*
|
||
|
* Compute L**H*A*L
|
||
|
*
|
||
|
DO 40 K = 1, N, NB
|
||
|
KB = MIN( N-K+1, NB )
|
||
|
*
|
||
|
* Update the lower triangle of A(1:k+kb-1,1:k+kb-1)
|
||
|
*
|
||
|
CALL ZTRMM( 'Right', UPLO, 'No transpose', 'Non-unit',
|
||
|
$ KB, K-1, CONE, B, LDB, A( K, 1 ), LDA )
|
||
|
CALL ZHEMM( 'Left', UPLO, KB, K-1, HALF, A( K, K ),
|
||
|
$ LDA, B( K, 1 ), LDB, CONE, A( K, 1 ),
|
||
|
$ LDA )
|
||
|
CALL ZHER2K( UPLO, 'Conjugate transpose', K-1, KB,
|
||
|
$ CONE, A( K, 1 ), LDA, B( K, 1 ), LDB,
|
||
|
$ ONE, A, LDA )
|
||
|
CALL ZHEMM( 'Left', UPLO, KB, K-1, HALF, A( K, K ),
|
||
|
$ LDA, B( K, 1 ), LDB, CONE, A( K, 1 ),
|
||
|
$ LDA )
|
||
|
CALL ZTRMM( 'Left', UPLO, 'Conjugate transpose',
|
||
|
$ 'Non-unit', KB, K-1, CONE, B( K, K ), LDB,
|
||
|
$ A( K, 1 ), LDA )
|
||
|
CALL ZHEGS2( ITYPE, UPLO, KB, A( K, K ), LDA,
|
||
|
$ B( K, K ), LDB, INFO )
|
||
|
40 CONTINUE
|
||
|
END IF
|
||
|
END IF
|
||
|
END IF
|
||
|
RETURN
|
||
|
*
|
||
|
* End of ZHEGST
|
||
|
*
|
||
|
END
|