You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
222 lines
6.7 KiB
222 lines
6.7 KiB
2 years ago
|
*> \brief <b> ZSPSV computes the solution to system of linear equations A * X = B for OTHER matrices</b>
|
||
|
*
|
||
|
* =========== DOCUMENTATION ===========
|
||
|
*
|
||
|
* Online html documentation available at
|
||
|
* http://www.netlib.org/lapack/explore-html/
|
||
|
*
|
||
|
*> \htmlonly
|
||
|
*> Download ZSPSV + dependencies
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zspsv.f">
|
||
|
*> [TGZ]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zspsv.f">
|
||
|
*> [ZIP]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zspsv.f">
|
||
|
*> [TXT]</a>
|
||
|
*> \endhtmlonly
|
||
|
*
|
||
|
* Definition:
|
||
|
* ===========
|
||
|
*
|
||
|
* SUBROUTINE ZSPSV( UPLO, N, NRHS, AP, IPIV, B, LDB, INFO )
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
* CHARACTER UPLO
|
||
|
* INTEGER INFO, LDB, N, NRHS
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
* INTEGER IPIV( * )
|
||
|
* COMPLEX*16 AP( * ), B( LDB, * )
|
||
|
* ..
|
||
|
*
|
||
|
*
|
||
|
*> \par Purpose:
|
||
|
* =============
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*> ZSPSV computes the solution to a complex system of linear equations
|
||
|
*> A * X = B,
|
||
|
*> where A is an N-by-N symmetric matrix stored in packed format and X
|
||
|
*> and B are N-by-NRHS matrices.
|
||
|
*>
|
||
|
*> The diagonal pivoting method is used to factor A as
|
||
|
*> A = U * D * U**T, if UPLO = 'U', or
|
||
|
*> A = L * D * L**T, if UPLO = 'L',
|
||
|
*> where U (or L) is a product of permutation and unit upper (lower)
|
||
|
*> triangular matrices, D is symmetric and block diagonal with 1-by-1
|
||
|
*> and 2-by-2 diagonal blocks. The factored form of A is then used to
|
||
|
*> solve the system of equations A * X = B.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Arguments:
|
||
|
* ==========
|
||
|
*
|
||
|
*> \param[in] UPLO
|
||
|
*> \verbatim
|
||
|
*> UPLO is CHARACTER*1
|
||
|
*> = 'U': Upper triangle of A is stored;
|
||
|
*> = 'L': Lower triangle of A is stored.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] N
|
||
|
*> \verbatim
|
||
|
*> N is INTEGER
|
||
|
*> The number of linear equations, i.e., the order of the
|
||
|
*> matrix A. N >= 0.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] NRHS
|
||
|
*> \verbatim
|
||
|
*> NRHS is INTEGER
|
||
|
*> The number of right hand sides, i.e., the number of columns
|
||
|
*> of the matrix B. NRHS >= 0.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] AP
|
||
|
*> \verbatim
|
||
|
*> AP is COMPLEX*16 array, dimension (N*(N+1)/2)
|
||
|
*> On entry, the upper or lower triangle of the symmetric matrix
|
||
|
*> A, packed columnwise in a linear array. The j-th column of A
|
||
|
*> is stored in the array AP as follows:
|
||
|
*> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
|
||
|
*> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
|
||
|
*> See below for further details.
|
||
|
*>
|
||
|
*> On exit, the block diagonal matrix D and the multipliers used
|
||
|
*> to obtain the factor U or L from the factorization
|
||
|
*> A = U*D*U**T or A = L*D*L**T as computed by ZSPTRF, stored as
|
||
|
*> a packed triangular matrix in the same storage format as A.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] IPIV
|
||
|
*> \verbatim
|
||
|
*> IPIV is INTEGER array, dimension (N)
|
||
|
*> Details of the interchanges and the block structure of D, as
|
||
|
*> determined by ZSPTRF. If IPIV(k) > 0, then rows and columns
|
||
|
*> k and IPIV(k) were interchanged, and D(k,k) is a 1-by-1
|
||
|
*> diagonal block. If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0,
|
||
|
*> then rows and columns k-1 and -IPIV(k) were interchanged and
|
||
|
*> D(k-1:k,k-1:k) is a 2-by-2 diagonal block. If UPLO = 'L' and
|
||
|
*> IPIV(k) = IPIV(k+1) < 0, then rows and columns k+1 and
|
||
|
*> -IPIV(k) were interchanged and D(k:k+1,k:k+1) is a 2-by-2
|
||
|
*> diagonal block.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] B
|
||
|
*> \verbatim
|
||
|
*> B is COMPLEX*16 array, dimension (LDB,NRHS)
|
||
|
*> On entry, the N-by-NRHS right hand side matrix B.
|
||
|
*> On exit, if INFO = 0, the N-by-NRHS solution matrix X.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDB
|
||
|
*> \verbatim
|
||
|
*> LDB is INTEGER
|
||
|
*> The leading dimension of the array B. LDB >= max(1,N).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] INFO
|
||
|
*> \verbatim
|
||
|
*> INFO is INTEGER
|
||
|
*> = 0: successful exit
|
||
|
*> < 0: if INFO = -i, the i-th argument had an illegal value
|
||
|
*> > 0: if INFO = i, D(i,i) is exactly zero. The factorization
|
||
|
*> has been completed, but the block diagonal matrix D is
|
||
|
*> exactly singular, so the solution could not be
|
||
|
*> computed.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Authors:
|
||
|
* ========
|
||
|
*
|
||
|
*> \author Univ. of Tennessee
|
||
|
*> \author Univ. of California Berkeley
|
||
|
*> \author Univ. of Colorado Denver
|
||
|
*> \author NAG Ltd.
|
||
|
*
|
||
|
*> \ingroup complex16OTHERsolve
|
||
|
*
|
||
|
*> \par Further Details:
|
||
|
* =====================
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*> The packed storage scheme is illustrated by the following example
|
||
|
*> when N = 4, UPLO = 'U':
|
||
|
*>
|
||
|
*> Two-dimensional storage of the symmetric matrix A:
|
||
|
*>
|
||
|
*> a11 a12 a13 a14
|
||
|
*> a22 a23 a24
|
||
|
*> a33 a34 (aij = aji)
|
||
|
*> a44
|
||
|
*>
|
||
|
*> Packed storage of the upper triangle of A:
|
||
|
*>
|
||
|
*> AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ]
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
* =====================================================================
|
||
|
SUBROUTINE ZSPSV( UPLO, N, NRHS, AP, IPIV, B, LDB, INFO )
|
||
|
*
|
||
|
* -- LAPACK driver routine --
|
||
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
CHARACTER UPLO
|
||
|
INTEGER INFO, LDB, N, NRHS
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
INTEGER IPIV( * )
|
||
|
COMPLEX*16 AP( * ), B( LDB, * )
|
||
|
* ..
|
||
|
*
|
||
|
* =====================================================================
|
||
|
*
|
||
|
* .. External Functions ..
|
||
|
LOGICAL LSAME
|
||
|
EXTERNAL LSAME
|
||
|
* ..
|
||
|
* .. External Subroutines ..
|
||
|
EXTERNAL XERBLA, ZSPTRF, ZSPTRS
|
||
|
* ..
|
||
|
* .. Intrinsic Functions ..
|
||
|
INTRINSIC MAX
|
||
|
* ..
|
||
|
* .. Executable Statements ..
|
||
|
*
|
||
|
* Test the input parameters.
|
||
|
*
|
||
|
INFO = 0
|
||
|
IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
|
||
|
INFO = -1
|
||
|
ELSE IF( N.LT.0 ) THEN
|
||
|
INFO = -2
|
||
|
ELSE IF( NRHS.LT.0 ) THEN
|
||
|
INFO = -3
|
||
|
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
|
||
|
INFO = -7
|
||
|
END IF
|
||
|
IF( INFO.NE.0 ) THEN
|
||
|
CALL XERBLA( 'ZSPSV ', -INFO )
|
||
|
RETURN
|
||
|
END IF
|
||
|
*
|
||
|
* Compute the factorization A = U*D*U**T or A = L*D*L**T.
|
||
|
*
|
||
|
CALL ZSPTRF( UPLO, N, AP, IPIV, INFO )
|
||
|
IF( INFO.EQ.0 ) THEN
|
||
|
*
|
||
|
* Solve the system A*X = B, overwriting B with X.
|
||
|
*
|
||
|
CALL ZSPTRS( UPLO, N, NRHS, AP, IPIV, B, LDB, INFO )
|
||
|
*
|
||
|
END IF
|
||
|
RETURN
|
||
|
*
|
||
|
* End of ZSPSV
|
||
|
*
|
||
|
END
|