You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
280 lines
8.0 KiB
280 lines
8.0 KiB
2 years ago
|
*> \brief \b ZSYCON_3
|
||
|
*
|
||
|
* =========== DOCUMENTATION ===========
|
||
|
*
|
||
|
* Online html documentation available at
|
||
|
* http://www.netlib.org/lapack/explore-html/
|
||
|
*
|
||
|
*> \htmlonly
|
||
|
*> Download ZSYCON_3 + dependencies
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zsycon_3.f">
|
||
|
*> [TGZ]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zsycon_3.f">
|
||
|
*> [ZIP]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zsycon_3.f">
|
||
|
*> [TXT]</a>
|
||
|
*> \endhtmlonly
|
||
|
*
|
||
|
* Definition:
|
||
|
* ===========
|
||
|
*
|
||
|
* SUBROUTINE ZSYCON_3( UPLO, N, A, LDA, E, IPIV, ANORM, RCOND,
|
||
|
* WORK, INFO )
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
* CHARACTER UPLO
|
||
|
* INTEGER INFO, LDA, N
|
||
|
* DOUBLE PRECISION ANORM, RCOND
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
* INTEGER IPIV( * )
|
||
|
* COMPLEX*16 A( LDA, * ), E ( * ), WORK( * )
|
||
|
* ..
|
||
|
*
|
||
|
*
|
||
|
*> \par Purpose:
|
||
|
* =============
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*> ZSYCON_3 estimates the reciprocal of the condition number (in the
|
||
|
*> 1-norm) of a complex symmetric matrix A using the factorization
|
||
|
*> computed by ZSYTRF_RK or ZSYTRF_BK:
|
||
|
*>
|
||
|
*> A = P*U*D*(U**T)*(P**T) or A = P*L*D*(L**T)*(P**T),
|
||
|
*>
|
||
|
*> where U (or L) is unit upper (or lower) triangular matrix,
|
||
|
*> U**T (or L**T) is the transpose of U (or L), P is a permutation
|
||
|
*> matrix, P**T is the transpose of P, and D is symmetric and block
|
||
|
*> diagonal with 1-by-1 and 2-by-2 diagonal blocks.
|
||
|
*>
|
||
|
*> An estimate is obtained for norm(inv(A)), and the reciprocal of the
|
||
|
*> condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))).
|
||
|
*> This routine uses BLAS3 solver ZSYTRS_3.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Arguments:
|
||
|
* ==========
|
||
|
*
|
||
|
*> \param[in] UPLO
|
||
|
*> \verbatim
|
||
|
*> UPLO is CHARACTER*1
|
||
|
*> Specifies whether the details of the factorization are
|
||
|
*> stored as an upper or lower triangular matrix:
|
||
|
*> = 'U': Upper triangular, form is A = P*U*D*(U**T)*(P**T);
|
||
|
*> = 'L': Lower triangular, form is A = P*L*D*(L**T)*(P**T).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] N
|
||
|
*> \verbatim
|
||
|
*> N is INTEGER
|
||
|
*> The order of the matrix A. N >= 0.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] A
|
||
|
*> \verbatim
|
||
|
*> A is COMPLEX*16 array, dimension (LDA,N)
|
||
|
*> Diagonal of the block diagonal matrix D and factors U or L
|
||
|
*> as computed by ZSYTRF_RK and ZSYTRF_BK:
|
||
|
*> a) ONLY diagonal elements of the symmetric block diagonal
|
||
|
*> matrix D on the diagonal of A, i.e. D(k,k) = A(k,k);
|
||
|
*> (superdiagonal (or subdiagonal) elements of D
|
||
|
*> should be provided on entry in array E), and
|
||
|
*> b) If UPLO = 'U': factor U in the superdiagonal part of A.
|
||
|
*> If UPLO = 'L': factor L in the subdiagonal part of A.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDA
|
||
|
*> \verbatim
|
||
|
*> LDA is INTEGER
|
||
|
*> The leading dimension of the array A. LDA >= max(1,N).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] E
|
||
|
*> \verbatim
|
||
|
*> E is COMPLEX*16 array, dimension (N)
|
||
|
*> On entry, contains the superdiagonal (or subdiagonal)
|
||
|
*> elements of the symmetric block diagonal matrix D
|
||
|
*> with 1-by-1 or 2-by-2 diagonal blocks, where
|
||
|
*> If UPLO = 'U': E(i) = D(i-1,i),i=2:N, E(1) not referenced;
|
||
|
*> If UPLO = 'L': E(i) = D(i+1,i),i=1:N-1, E(N) not referenced.
|
||
|
*>
|
||
|
*> NOTE: For 1-by-1 diagonal block D(k), where
|
||
|
*> 1 <= k <= N, the element E(k) is not referenced in both
|
||
|
*> UPLO = 'U' or UPLO = 'L' cases.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] IPIV
|
||
|
*> \verbatim
|
||
|
*> IPIV is INTEGER array, dimension (N)
|
||
|
*> Details of the interchanges and the block structure of D
|
||
|
*> as determined by ZSYTRF_RK or ZSYTRF_BK.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] ANORM
|
||
|
*> \verbatim
|
||
|
*> ANORM is DOUBLE PRECISION
|
||
|
*> The 1-norm of the original matrix A.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] RCOND
|
||
|
*> \verbatim
|
||
|
*> RCOND is DOUBLE PRECISION
|
||
|
*> The reciprocal of the condition number of the matrix A,
|
||
|
*> computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is an
|
||
|
*> estimate of the 1-norm of inv(A) computed in this routine.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] WORK
|
||
|
*> \verbatim
|
||
|
*> WORK is COMPLEX*16 array, dimension (2*N)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] INFO
|
||
|
*> \verbatim
|
||
|
*> INFO is INTEGER
|
||
|
*> = 0: successful exit
|
||
|
*> < 0: if INFO = -i, the i-th argument had an illegal value
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Authors:
|
||
|
* ========
|
||
|
*
|
||
|
*> \author Univ. of Tennessee
|
||
|
*> \author Univ. of California Berkeley
|
||
|
*> \author Univ. of Colorado Denver
|
||
|
*> \author NAG Ltd.
|
||
|
*
|
||
|
*> \ingroup complex16SYcomputational
|
||
|
*
|
||
|
*> \par Contributors:
|
||
|
* ==================
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*> June 2017, Igor Kozachenko,
|
||
|
*> Computer Science Division,
|
||
|
*> University of California, Berkeley
|
||
|
*>
|
||
|
*> September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas,
|
||
|
*> School of Mathematics,
|
||
|
*> University of Manchester
|
||
|
*>
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* =====================================================================
|
||
|
SUBROUTINE ZSYCON_3( UPLO, N, A, LDA, E, IPIV, ANORM, RCOND,
|
||
|
$ WORK, INFO )
|
||
|
*
|
||
|
* -- LAPACK computational routine --
|
||
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
CHARACTER UPLO
|
||
|
INTEGER INFO, LDA, N
|
||
|
DOUBLE PRECISION ANORM, RCOND
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
INTEGER IPIV( * )
|
||
|
COMPLEX*16 A( LDA, * ), E( * ), WORK( * )
|
||
|
* ..
|
||
|
*
|
||
|
* =====================================================================
|
||
|
*
|
||
|
* .. Parameters ..
|
||
|
DOUBLE PRECISION ONE, ZERO
|
||
|
PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
|
||
|
COMPLEX*16 CZERO
|
||
|
PARAMETER ( CZERO = ( 0.0D+0, 0.0D+0 ) )
|
||
|
* ..
|
||
|
* .. Local Scalars ..
|
||
|
LOGICAL UPPER
|
||
|
INTEGER I, KASE
|
||
|
DOUBLE PRECISION AINVNM
|
||
|
* ..
|
||
|
* .. Local Arrays ..
|
||
|
INTEGER ISAVE( 3 )
|
||
|
* ..
|
||
|
* .. External Functions ..
|
||
|
LOGICAL LSAME
|
||
|
EXTERNAL LSAME
|
||
|
* ..
|
||
|
* .. External Subroutines ..
|
||
|
EXTERNAL ZLACN2, ZSYTRS_3, XERBLA
|
||
|
* ..
|
||
|
* .. Intrinsic Functions ..
|
||
|
INTRINSIC MAX
|
||
|
* ..
|
||
|
* .. Executable Statements ..
|
||
|
*
|
||
|
* Test the input parameters.
|
||
|
*
|
||
|
INFO = 0
|
||
|
UPPER = LSAME( UPLO, 'U' )
|
||
|
IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
|
||
|
INFO = -1
|
||
|
ELSE IF( N.LT.0 ) THEN
|
||
|
INFO = -2
|
||
|
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
|
||
|
INFO = -4
|
||
|
ELSE IF( ANORM.LT.ZERO ) THEN
|
||
|
INFO = -7
|
||
|
END IF
|
||
|
IF( INFO.NE.0 ) THEN
|
||
|
CALL XERBLA( 'ZSYCON_3', -INFO )
|
||
|
RETURN
|
||
|
END IF
|
||
|
*
|
||
|
* Quick return if possible
|
||
|
*
|
||
|
RCOND = ZERO
|
||
|
IF( N.EQ.0 ) THEN
|
||
|
RCOND = ONE
|
||
|
RETURN
|
||
|
ELSE IF( ANORM.LE.ZERO ) THEN
|
||
|
RETURN
|
||
|
END IF
|
||
|
*
|
||
|
* Check that the diagonal matrix D is nonsingular.
|
||
|
*
|
||
|
IF( UPPER ) THEN
|
||
|
*
|
||
|
* Upper triangular storage: examine D from bottom to top
|
||
|
*
|
||
|
DO I = N, 1, -1
|
||
|
IF( IPIV( I ).GT.0 .AND. A( I, I ).EQ.CZERO )
|
||
|
$ RETURN
|
||
|
END DO
|
||
|
ELSE
|
||
|
*
|
||
|
* Lower triangular storage: examine D from top to bottom.
|
||
|
*
|
||
|
DO I = 1, N
|
||
|
IF( IPIV( I ).GT.0 .AND. A( I, I ).EQ.CZERO )
|
||
|
$ RETURN
|
||
|
END DO
|
||
|
END IF
|
||
|
*
|
||
|
* Estimate the 1-norm of the inverse.
|
||
|
*
|
||
|
KASE = 0
|
||
|
30 CONTINUE
|
||
|
CALL ZLACN2( N, WORK( N+1 ), WORK, AINVNM, KASE, ISAVE )
|
||
|
IF( KASE.NE.0 ) THEN
|
||
|
*
|
||
|
* Multiply by inv(L*D*L**T) or inv(U*D*U**T).
|
||
|
*
|
||
|
CALL ZSYTRS_3( UPLO, N, 1, A, LDA, E, IPIV, WORK, N, INFO )
|
||
|
GO TO 30
|
||
|
END IF
|
||
|
*
|
||
|
* Compute the estimate of the reciprocal condition number.
|
||
|
*
|
||
|
IF( AINVNM.NE.ZERO )
|
||
|
$ RCOND = ( ONE / AINVNM ) / ANORM
|
||
|
*
|
||
|
RETURN
|
||
|
*
|
||
|
* End of ZSYCON_3
|
||
|
*
|
||
|
END
|