You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
470 lines
15 KiB
470 lines
15 KiB
2 years ago
|
*> \brief \b ZTGSY2 solves the generalized Sylvester equation (unblocked algorithm).
|
||
|
*
|
||
|
* =========== DOCUMENTATION ===========
|
||
|
*
|
||
|
* Online html documentation available at
|
||
|
* http://www.netlib.org/lapack/explore-html/
|
||
|
*
|
||
|
*> \htmlonly
|
||
|
*> Download ZTGSY2 + dependencies
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ztgsy2.f">
|
||
|
*> [TGZ]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ztgsy2.f">
|
||
|
*> [ZIP]</a>
|
||
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ztgsy2.f">
|
||
|
*> [TXT]</a>
|
||
|
*> \endhtmlonly
|
||
|
*
|
||
|
* Definition:
|
||
|
* ===========
|
||
|
*
|
||
|
* SUBROUTINE ZTGSY2( TRANS, IJOB, M, N, A, LDA, B, LDB, C, LDC, D,
|
||
|
* LDD, E, LDE, F, LDF, SCALE, RDSUM, RDSCAL,
|
||
|
* INFO )
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
* CHARACTER TRANS
|
||
|
* INTEGER IJOB, INFO, LDA, LDB, LDC, LDD, LDE, LDF, M, N
|
||
|
* DOUBLE PRECISION RDSCAL, RDSUM, SCALE
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
* COMPLEX*16 A( LDA, * ), B( LDB, * ), C( LDC, * ),
|
||
|
* $ D( LDD, * ), E( LDE, * ), F( LDF, * )
|
||
|
* ..
|
||
|
*
|
||
|
*
|
||
|
*> \par Purpose:
|
||
|
* =============
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*> ZTGSY2 solves the generalized Sylvester equation
|
||
|
*>
|
||
|
*> A * R - L * B = scale * C (1)
|
||
|
*> D * R - L * E = scale * F
|
||
|
*>
|
||
|
*> using Level 1 and 2 BLAS, where R and L are unknown M-by-N matrices,
|
||
|
*> (A, D), (B, E) and (C, F) are given matrix pairs of size M-by-M,
|
||
|
*> N-by-N and M-by-N, respectively. A, B, D and E are upper triangular
|
||
|
*> (i.e., (A,D) and (B,E) in generalized Schur form).
|
||
|
*>
|
||
|
*> The solution (R, L) overwrites (C, F). 0 <= SCALE <= 1 is an output
|
||
|
*> scaling factor chosen to avoid overflow.
|
||
|
*>
|
||
|
*> In matrix notation solving equation (1) corresponds to solve
|
||
|
*> Zx = scale * b, where Z is defined as
|
||
|
*>
|
||
|
*> Z = [ kron(In, A) -kron(B**H, Im) ] (2)
|
||
|
*> [ kron(In, D) -kron(E**H, Im) ],
|
||
|
*>
|
||
|
*> Ik is the identity matrix of size k and X**H is the conjugate transpose of X.
|
||
|
*> kron(X, Y) is the Kronecker product between the matrices X and Y.
|
||
|
*>
|
||
|
*> If TRANS = 'C', y in the conjugate transposed system Z**H*y = scale*b
|
||
|
*> is solved for, which is equivalent to solve for R and L in
|
||
|
*>
|
||
|
*> A**H * R + D**H * L = scale * C (3)
|
||
|
*> R * B**H + L * E**H = scale * -F
|
||
|
*>
|
||
|
*> This case is used to compute an estimate of Dif[(A, D), (B, E)] =
|
||
|
*> = sigma_min(Z) using reverse communication with ZLACON.
|
||
|
*>
|
||
|
*> ZTGSY2 also (IJOB >= 1) contributes to the computation in ZTGSYL
|
||
|
*> of an upper bound on the separation between to matrix pairs. Then
|
||
|
*> the input (A, D), (B, E) are sub-pencils of two matrix pairs in
|
||
|
*> ZTGSYL.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Arguments:
|
||
|
* ==========
|
||
|
*
|
||
|
*> \param[in] TRANS
|
||
|
*> \verbatim
|
||
|
*> TRANS is CHARACTER*1
|
||
|
*> = 'N': solve the generalized Sylvester equation (1).
|
||
|
*> = 'T': solve the 'transposed' system (3).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] IJOB
|
||
|
*> \verbatim
|
||
|
*> IJOB is INTEGER
|
||
|
*> Specifies what kind of functionality to be performed.
|
||
|
*> =0: solve (1) only.
|
||
|
*> =1: A contribution from this subsystem to a Frobenius
|
||
|
*> norm-based estimate of the separation between two matrix
|
||
|
*> pairs is computed. (look ahead strategy is used).
|
||
|
*> =2: A contribution from this subsystem to a Frobenius
|
||
|
*> norm-based estimate of the separation between two matrix
|
||
|
*> pairs is computed. (DGECON on sub-systems is used.)
|
||
|
*> Not referenced if TRANS = 'T'.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] M
|
||
|
*> \verbatim
|
||
|
*> M is INTEGER
|
||
|
*> On entry, M specifies the order of A and D, and the row
|
||
|
*> dimension of C, F, R and L.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] N
|
||
|
*> \verbatim
|
||
|
*> N is INTEGER
|
||
|
*> On entry, N specifies the order of B and E, and the column
|
||
|
*> dimension of C, F, R and L.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] A
|
||
|
*> \verbatim
|
||
|
*> A is COMPLEX*16 array, dimension (LDA, M)
|
||
|
*> On entry, A contains an upper triangular matrix.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDA
|
||
|
*> \verbatim
|
||
|
*> LDA is INTEGER
|
||
|
*> The leading dimension of the matrix A. LDA >= max(1, M).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] B
|
||
|
*> \verbatim
|
||
|
*> B is COMPLEX*16 array, dimension (LDB, N)
|
||
|
*> On entry, B contains an upper triangular matrix.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDB
|
||
|
*> \verbatim
|
||
|
*> LDB is INTEGER
|
||
|
*> The leading dimension of the matrix B. LDB >= max(1, N).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] C
|
||
|
*> \verbatim
|
||
|
*> C is COMPLEX*16 array, dimension (LDC, N)
|
||
|
*> On entry, C contains the right-hand-side of the first matrix
|
||
|
*> equation in (1).
|
||
|
*> On exit, if IJOB = 0, C has been overwritten by the solution
|
||
|
*> R.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDC
|
||
|
*> \verbatim
|
||
|
*> LDC is INTEGER
|
||
|
*> The leading dimension of the matrix C. LDC >= max(1, M).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] D
|
||
|
*> \verbatim
|
||
|
*> D is COMPLEX*16 array, dimension (LDD, M)
|
||
|
*> On entry, D contains an upper triangular matrix.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDD
|
||
|
*> \verbatim
|
||
|
*> LDD is INTEGER
|
||
|
*> The leading dimension of the matrix D. LDD >= max(1, M).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] E
|
||
|
*> \verbatim
|
||
|
*> E is COMPLEX*16 array, dimension (LDE, N)
|
||
|
*> On entry, E contains an upper triangular matrix.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDE
|
||
|
*> \verbatim
|
||
|
*> LDE is INTEGER
|
||
|
*> The leading dimension of the matrix E. LDE >= max(1, N).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] F
|
||
|
*> \verbatim
|
||
|
*> F is COMPLEX*16 array, dimension (LDF, N)
|
||
|
*> On entry, F contains the right-hand-side of the second matrix
|
||
|
*> equation in (1).
|
||
|
*> On exit, if IJOB = 0, F has been overwritten by the solution
|
||
|
*> L.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDF
|
||
|
*> \verbatim
|
||
|
*> LDF is INTEGER
|
||
|
*> The leading dimension of the matrix F. LDF >= max(1, M).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] SCALE
|
||
|
*> \verbatim
|
||
|
*> SCALE is DOUBLE PRECISION
|
||
|
*> On exit, 0 <= SCALE <= 1. If 0 < SCALE < 1, the solutions
|
||
|
*> R and L (C and F on entry) will hold the solutions to a
|
||
|
*> slightly perturbed system but the input matrices A, B, D and
|
||
|
*> E have not been changed. If SCALE = 0, R and L will hold the
|
||
|
*> solutions to the homogeneous system with C = F = 0.
|
||
|
*> Normally, SCALE = 1.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] RDSUM
|
||
|
*> \verbatim
|
||
|
*> RDSUM is DOUBLE PRECISION
|
||
|
*> On entry, the sum of squares of computed contributions to
|
||
|
*> the Dif-estimate under computation by ZTGSYL, where the
|
||
|
*> scaling factor RDSCAL (see below) has been factored out.
|
||
|
*> On exit, the corresponding sum of squares updated with the
|
||
|
*> contributions from the current sub-system.
|
||
|
*> If TRANS = 'T' RDSUM is not touched.
|
||
|
*> NOTE: RDSUM only makes sense when ZTGSY2 is called by
|
||
|
*> ZTGSYL.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] RDSCAL
|
||
|
*> \verbatim
|
||
|
*> RDSCAL is DOUBLE PRECISION
|
||
|
*> On entry, scaling factor used to prevent overflow in RDSUM.
|
||
|
*> On exit, RDSCAL is updated w.r.t. the current contributions
|
||
|
*> in RDSUM.
|
||
|
*> If TRANS = 'T', RDSCAL is not touched.
|
||
|
*> NOTE: RDSCAL only makes sense when ZTGSY2 is called by
|
||
|
*> ZTGSYL.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] INFO
|
||
|
*> \verbatim
|
||
|
*> INFO is INTEGER
|
||
|
*> On exit, if INFO is set to
|
||
|
*> =0: Successful exit
|
||
|
*> <0: If INFO = -i, input argument number i is illegal.
|
||
|
*> >0: The matrix pairs (A, D) and (B, E) have common or very
|
||
|
*> close eigenvalues.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Authors:
|
||
|
* ========
|
||
|
*
|
||
|
*> \author Univ. of Tennessee
|
||
|
*> \author Univ. of California Berkeley
|
||
|
*> \author Univ. of Colorado Denver
|
||
|
*> \author NAG Ltd.
|
||
|
*
|
||
|
*> \ingroup complex16SYauxiliary
|
||
|
*
|
||
|
*> \par Contributors:
|
||
|
* ==================
|
||
|
*>
|
||
|
*> Bo Kagstrom and Peter Poromaa, Department of Computing Science,
|
||
|
*> Umea University, S-901 87 Umea, Sweden.
|
||
|
*
|
||
|
* =====================================================================
|
||
|
SUBROUTINE ZTGSY2( TRANS, IJOB, M, N, A, LDA, B, LDB, C, LDC, D,
|
||
|
$ LDD, E, LDE, F, LDF, SCALE, RDSUM, RDSCAL,
|
||
|
$ INFO )
|
||
|
*
|
||
|
* -- LAPACK auxiliary routine --
|
||
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
CHARACTER TRANS
|
||
|
INTEGER IJOB, INFO, LDA, LDB, LDC, LDD, LDE, LDF, M, N
|
||
|
DOUBLE PRECISION RDSCAL, RDSUM, SCALE
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
COMPLEX*16 A( LDA, * ), B( LDB, * ), C( LDC, * ),
|
||
|
$ D( LDD, * ), E( LDE, * ), F( LDF, * )
|
||
|
* ..
|
||
|
*
|
||
|
* =====================================================================
|
||
|
*
|
||
|
* .. Parameters ..
|
||
|
DOUBLE PRECISION ZERO, ONE
|
||
|
INTEGER LDZ
|
||
|
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0, LDZ = 2 )
|
||
|
* ..
|
||
|
* .. Local Scalars ..
|
||
|
LOGICAL NOTRAN
|
||
|
INTEGER I, IERR, J, K
|
||
|
DOUBLE PRECISION SCALOC
|
||
|
COMPLEX*16 ALPHA
|
||
|
* ..
|
||
|
* .. Local Arrays ..
|
||
|
INTEGER IPIV( LDZ ), JPIV( LDZ )
|
||
|
COMPLEX*16 RHS( LDZ ), Z( LDZ, LDZ )
|
||
|
* ..
|
||
|
* .. External Functions ..
|
||
|
LOGICAL LSAME
|
||
|
EXTERNAL LSAME
|
||
|
* ..
|
||
|
* .. External Subroutines ..
|
||
|
EXTERNAL XERBLA, ZAXPY, ZGESC2, ZGETC2, ZLATDF, ZSCAL
|
||
|
* ..
|
||
|
* .. Intrinsic Functions ..
|
||
|
INTRINSIC DCMPLX, DCONJG, MAX
|
||
|
* ..
|
||
|
* .. Executable Statements ..
|
||
|
*
|
||
|
* Decode and test input parameters
|
||
|
*
|
||
|
INFO = 0
|
||
|
IERR = 0
|
||
|
NOTRAN = LSAME( TRANS, 'N' )
|
||
|
IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'C' ) ) THEN
|
||
|
INFO = -1
|
||
|
ELSE IF( NOTRAN ) THEN
|
||
|
IF( ( IJOB.LT.0 ) .OR. ( IJOB.GT.2 ) ) THEN
|
||
|
INFO = -2
|
||
|
END IF
|
||
|
END IF
|
||
|
IF( INFO.EQ.0 ) THEN
|
||
|
IF( M.LE.0 ) THEN
|
||
|
INFO = -3
|
||
|
ELSE IF( N.LE.0 ) THEN
|
||
|
INFO = -4
|
||
|
ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
|
||
|
INFO = -6
|
||
|
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
|
||
|
INFO = -8
|
||
|
ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
|
||
|
INFO = -10
|
||
|
ELSE IF( LDD.LT.MAX( 1, M ) ) THEN
|
||
|
INFO = -12
|
||
|
ELSE IF( LDE.LT.MAX( 1, N ) ) THEN
|
||
|
INFO = -14
|
||
|
ELSE IF( LDF.LT.MAX( 1, M ) ) THEN
|
||
|
INFO = -16
|
||
|
END IF
|
||
|
END IF
|
||
|
IF( INFO.NE.0 ) THEN
|
||
|
CALL XERBLA( 'ZTGSY2', -INFO )
|
||
|
RETURN
|
||
|
END IF
|
||
|
*
|
||
|
IF( NOTRAN ) THEN
|
||
|
*
|
||
|
* Solve (I, J) - system
|
||
|
* A(I, I) * R(I, J) - L(I, J) * B(J, J) = C(I, J)
|
||
|
* D(I, I) * R(I, J) - L(I, J) * E(J, J) = F(I, J)
|
||
|
* for I = M, M - 1, ..., 1; J = 1, 2, ..., N
|
||
|
*
|
||
|
SCALE = ONE
|
||
|
SCALOC = ONE
|
||
|
DO 30 J = 1, N
|
||
|
DO 20 I = M, 1, -1
|
||
|
*
|
||
|
* Build 2 by 2 system
|
||
|
*
|
||
|
Z( 1, 1 ) = A( I, I )
|
||
|
Z( 2, 1 ) = D( I, I )
|
||
|
Z( 1, 2 ) = -B( J, J )
|
||
|
Z( 2, 2 ) = -E( J, J )
|
||
|
*
|
||
|
* Set up right hand side(s)
|
||
|
*
|
||
|
RHS( 1 ) = C( I, J )
|
||
|
RHS( 2 ) = F( I, J )
|
||
|
*
|
||
|
* Solve Z * x = RHS
|
||
|
*
|
||
|
CALL ZGETC2( LDZ, Z, LDZ, IPIV, JPIV, IERR )
|
||
|
IF( IERR.GT.0 )
|
||
|
$ INFO = IERR
|
||
|
IF( IJOB.EQ.0 ) THEN
|
||
|
CALL ZGESC2( LDZ, Z, LDZ, RHS, IPIV, JPIV, SCALOC )
|
||
|
IF( SCALOC.NE.ONE ) THEN
|
||
|
DO 10 K = 1, N
|
||
|
CALL ZSCAL( M, DCMPLX( SCALOC, ZERO ),
|
||
|
$ C( 1, K ), 1 )
|
||
|
CALL ZSCAL( M, DCMPLX( SCALOC, ZERO ),
|
||
|
$ F( 1, K ), 1 )
|
||
|
10 CONTINUE
|
||
|
SCALE = SCALE*SCALOC
|
||
|
END IF
|
||
|
ELSE
|
||
|
CALL ZLATDF( IJOB, LDZ, Z, LDZ, RHS, RDSUM, RDSCAL,
|
||
|
$ IPIV, JPIV )
|
||
|
END IF
|
||
|
*
|
||
|
* Unpack solution vector(s)
|
||
|
*
|
||
|
C( I, J ) = RHS( 1 )
|
||
|
F( I, J ) = RHS( 2 )
|
||
|
*
|
||
|
* Substitute R(I, J) and L(I, J) into remaining equation.
|
||
|
*
|
||
|
IF( I.GT.1 ) THEN
|
||
|
ALPHA = -RHS( 1 )
|
||
|
CALL ZAXPY( I-1, ALPHA, A( 1, I ), 1, C( 1, J ), 1 )
|
||
|
CALL ZAXPY( I-1, ALPHA, D( 1, I ), 1, F( 1, J ), 1 )
|
||
|
END IF
|
||
|
IF( J.LT.N ) THEN
|
||
|
CALL ZAXPY( N-J, RHS( 2 ), B( J, J+1 ), LDB,
|
||
|
$ C( I, J+1 ), LDC )
|
||
|
CALL ZAXPY( N-J, RHS( 2 ), E( J, J+1 ), LDE,
|
||
|
$ F( I, J+1 ), LDF )
|
||
|
END IF
|
||
|
*
|
||
|
20 CONTINUE
|
||
|
30 CONTINUE
|
||
|
ELSE
|
||
|
*
|
||
|
* Solve transposed (I, J) - system:
|
||
|
* A(I, I)**H * R(I, J) + D(I, I)**H * L(J, J) = C(I, J)
|
||
|
* R(I, I) * B(J, J) + L(I, J) * E(J, J) = -F(I, J)
|
||
|
* for I = 1, 2, ..., M, J = N, N - 1, ..., 1
|
||
|
*
|
||
|
SCALE = ONE
|
||
|
SCALOC = ONE
|
||
|
DO 80 I = 1, M
|
||
|
DO 70 J = N, 1, -1
|
||
|
*
|
||
|
* Build 2 by 2 system Z**H
|
||
|
*
|
||
|
Z( 1, 1 ) = DCONJG( A( I, I ) )
|
||
|
Z( 2, 1 ) = -DCONJG( B( J, J ) )
|
||
|
Z( 1, 2 ) = DCONJG( D( I, I ) )
|
||
|
Z( 2, 2 ) = -DCONJG( E( J, J ) )
|
||
|
*
|
||
|
*
|
||
|
* Set up right hand side(s)
|
||
|
*
|
||
|
RHS( 1 ) = C( I, J )
|
||
|
RHS( 2 ) = F( I, J )
|
||
|
*
|
||
|
* Solve Z**H * x = RHS
|
||
|
*
|
||
|
CALL ZGETC2( LDZ, Z, LDZ, IPIV, JPIV, IERR )
|
||
|
IF( IERR.GT.0 )
|
||
|
$ INFO = IERR
|
||
|
CALL ZGESC2( LDZ, Z, LDZ, RHS, IPIV, JPIV, SCALOC )
|
||
|
IF( SCALOC.NE.ONE ) THEN
|
||
|
DO 40 K = 1, N
|
||
|
CALL ZSCAL( M, DCMPLX( SCALOC, ZERO ), C( 1, K ),
|
||
|
$ 1 )
|
||
|
CALL ZSCAL( M, DCMPLX( SCALOC, ZERO ), F( 1, K ),
|
||
|
$ 1 )
|
||
|
40 CONTINUE
|
||
|
SCALE = SCALE*SCALOC
|
||
|
END IF
|
||
|
*
|
||
|
* Unpack solution vector(s)
|
||
|
*
|
||
|
C( I, J ) = RHS( 1 )
|
||
|
F( I, J ) = RHS( 2 )
|
||
|
*
|
||
|
* Substitute R(I, J) and L(I, J) into remaining equation.
|
||
|
*
|
||
|
DO 50 K = 1, J - 1
|
||
|
F( I, K ) = F( I, K ) + RHS( 1 )*DCONJG( B( K, J ) ) +
|
||
|
$ RHS( 2 )*DCONJG( E( K, J ) )
|
||
|
50 CONTINUE
|
||
|
DO 60 K = I + 1, M
|
||
|
C( K, J ) = C( K, J ) - DCONJG( A( I, K ) )*RHS( 1 ) -
|
||
|
$ DCONJG( D( I, K ) )*RHS( 2 )
|
||
|
60 CONTINUE
|
||
|
*
|
||
|
70 CONTINUE
|
||
|
80 CONTINUE
|
||
|
END IF
|
||
|
RETURN
|
||
|
*
|
||
|
* End of ZTGSY2
|
||
|
*
|
||
|
END
|