You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
269 lines
7.4 KiB
269 lines
7.4 KiB
2 years ago
|
*> \brief \b CBDT03
|
||
|
*
|
||
|
* =========== DOCUMENTATION ===========
|
||
|
*
|
||
|
* Online html documentation available at
|
||
|
* http://www.netlib.org/lapack/explore-html/
|
||
|
*
|
||
|
* Definition:
|
||
|
* ===========
|
||
|
*
|
||
|
* SUBROUTINE CBDT03( UPLO, N, KD, D, E, U, LDU, S, VT, LDVT, WORK,
|
||
|
* RESID )
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
* CHARACTER UPLO
|
||
|
* INTEGER KD, LDU, LDVT, N
|
||
|
* REAL RESID
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
* REAL D( * ), E( * ), S( * )
|
||
|
* COMPLEX U( LDU, * ), VT( LDVT, * ), WORK( * )
|
||
|
* ..
|
||
|
*
|
||
|
*
|
||
|
*> \par Purpose:
|
||
|
* =============
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*> CBDT03 reconstructs a bidiagonal matrix B from its SVD:
|
||
|
*> S = U' * B * V
|
||
|
*> where U and V are orthogonal matrices and S is diagonal.
|
||
|
*>
|
||
|
*> The test ratio to test the singular value decomposition is
|
||
|
*> RESID = norm( B - U * S * VT ) / ( n * norm(B) * EPS )
|
||
|
*> where VT = V' and EPS is the machine precision.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Arguments:
|
||
|
* ==========
|
||
|
*
|
||
|
*> \param[in] UPLO
|
||
|
*> \verbatim
|
||
|
*> UPLO is CHARACTER*1
|
||
|
*> Specifies whether the matrix B is upper or lower bidiagonal.
|
||
|
*> = 'U': Upper bidiagonal
|
||
|
*> = 'L': Lower bidiagonal
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] N
|
||
|
*> \verbatim
|
||
|
*> N is INTEGER
|
||
|
*> The order of the matrix B.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] KD
|
||
|
*> \verbatim
|
||
|
*> KD is INTEGER
|
||
|
*> The bandwidth of the bidiagonal matrix B. If KD = 1, the
|
||
|
*> matrix B is bidiagonal, and if KD = 0, B is diagonal and E is
|
||
|
*> not referenced. If KD is greater than 1, it is assumed to be
|
||
|
*> 1, and if KD is less than 0, it is assumed to be 0.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] D
|
||
|
*> \verbatim
|
||
|
*> D is REAL array, dimension (N)
|
||
|
*> The n diagonal elements of the bidiagonal matrix B.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] E
|
||
|
*> \verbatim
|
||
|
*> E is REAL array, dimension (N-1)
|
||
|
*> The (n-1) superdiagonal elements of the bidiagonal matrix B
|
||
|
*> if UPLO = 'U', or the (n-1) subdiagonal elements of B if
|
||
|
*> UPLO = 'L'.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] U
|
||
|
*> \verbatim
|
||
|
*> U is COMPLEX array, dimension (LDU,N)
|
||
|
*> The n by n orthogonal matrix U in the reduction B = U'*A*P.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDU
|
||
|
*> \verbatim
|
||
|
*> LDU is INTEGER
|
||
|
*> The leading dimension of the array U. LDU >= max(1,N)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] S
|
||
|
*> \verbatim
|
||
|
*> S is REAL array, dimension (N)
|
||
|
*> The singular values from the SVD of B, sorted in decreasing
|
||
|
*> order.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] VT
|
||
|
*> \verbatim
|
||
|
*> VT is COMPLEX array, dimension (LDVT,N)
|
||
|
*> The n by n orthogonal matrix V' in the reduction
|
||
|
*> B = U * S * V'.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDVT
|
||
|
*> \verbatim
|
||
|
*> LDVT is INTEGER
|
||
|
*> The leading dimension of the array VT.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] WORK
|
||
|
*> \verbatim
|
||
|
*> WORK is COMPLEX array, dimension (2*N)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] RESID
|
||
|
*> \verbatim
|
||
|
*> RESID is REAL
|
||
|
*> The test ratio: norm(B - U * S * V') / ( n * norm(A) * EPS )
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Authors:
|
||
|
* ========
|
||
|
*
|
||
|
*> \author Univ. of Tennessee
|
||
|
*> \author Univ. of California Berkeley
|
||
|
*> \author Univ. of Colorado Denver
|
||
|
*> \author NAG Ltd.
|
||
|
*
|
||
|
*> \ingroup complex_eig
|
||
|
*
|
||
|
* =====================================================================
|
||
|
SUBROUTINE CBDT03( UPLO, N, KD, D, E, U, LDU, S, VT, LDVT, WORK,
|
||
|
$ RESID )
|
||
|
*
|
||
|
* -- LAPACK test routine --
|
||
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
CHARACTER UPLO
|
||
|
INTEGER KD, LDU, LDVT, N
|
||
|
REAL RESID
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
REAL D( * ), E( * ), S( * )
|
||
|
COMPLEX U( LDU, * ), VT( LDVT, * ), WORK( * )
|
||
|
* ..
|
||
|
*
|
||
|
* ======================================================================
|
||
|
*
|
||
|
* .. Parameters ..
|
||
|
REAL ZERO, ONE
|
||
|
PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
|
||
|
* ..
|
||
|
* .. Local Scalars ..
|
||
|
INTEGER I, J
|
||
|
REAL BNORM, EPS
|
||
|
* ..
|
||
|
* .. External Functions ..
|
||
|
LOGICAL LSAME
|
||
|
INTEGER ISAMAX
|
||
|
REAL SCASUM, SLAMCH
|
||
|
EXTERNAL LSAME, ISAMAX, SCASUM, SLAMCH
|
||
|
* ..
|
||
|
* .. External Subroutines ..
|
||
|
EXTERNAL CGEMV
|
||
|
* ..
|
||
|
* .. Intrinsic Functions ..
|
||
|
INTRINSIC ABS, CMPLX, MAX, MIN, REAL
|
||
|
* ..
|
||
|
* .. Executable Statements ..
|
||
|
*
|
||
|
* Quick return if possible
|
||
|
*
|
||
|
RESID = ZERO
|
||
|
IF( N.LE.0 )
|
||
|
$ RETURN
|
||
|
*
|
||
|
* Compute B - U * S * V' one column at a time.
|
||
|
*
|
||
|
BNORM = ZERO
|
||
|
IF( KD.GE.1 ) THEN
|
||
|
*
|
||
|
* B is bidiagonal.
|
||
|
*
|
||
|
IF( LSAME( UPLO, 'U' ) ) THEN
|
||
|
*
|
||
|
* B is upper bidiagonal.
|
||
|
*
|
||
|
DO 20 J = 1, N
|
||
|
DO 10 I = 1, N
|
||
|
WORK( N+I ) = S( I )*VT( I, J )
|
||
|
10 CONTINUE
|
||
|
CALL CGEMV( 'No transpose', N, N, -CMPLX( ONE ), U, LDU,
|
||
|
$ WORK( N+1 ), 1, CMPLX( ZERO ), WORK, 1 )
|
||
|
WORK( J ) = WORK( J ) + D( J )
|
||
|
IF( J.GT.1 ) THEN
|
||
|
WORK( J-1 ) = WORK( J-1 ) + E( J-1 )
|
||
|
BNORM = MAX( BNORM, ABS( D( J ) )+ABS( E( J-1 ) ) )
|
||
|
ELSE
|
||
|
BNORM = MAX( BNORM, ABS( D( J ) ) )
|
||
|
END IF
|
||
|
RESID = MAX( RESID, SCASUM( N, WORK, 1 ) )
|
||
|
20 CONTINUE
|
||
|
ELSE
|
||
|
*
|
||
|
* B is lower bidiagonal.
|
||
|
*
|
||
|
DO 40 J = 1, N
|
||
|
DO 30 I = 1, N
|
||
|
WORK( N+I ) = S( I )*VT( I, J )
|
||
|
30 CONTINUE
|
||
|
CALL CGEMV( 'No transpose', N, N, -CMPLX( ONE ), U, LDU,
|
||
|
$ WORK( N+1 ), 1, CMPLX( ZERO ), WORK, 1 )
|
||
|
WORK( J ) = WORK( J ) + D( J )
|
||
|
IF( J.LT.N ) THEN
|
||
|
WORK( J+1 ) = WORK( J+1 ) + E( J )
|
||
|
BNORM = MAX( BNORM, ABS( D( J ) )+ABS( E( J ) ) )
|
||
|
ELSE
|
||
|
BNORM = MAX( BNORM, ABS( D( J ) ) )
|
||
|
END IF
|
||
|
RESID = MAX( RESID, SCASUM( N, WORK, 1 ) )
|
||
|
40 CONTINUE
|
||
|
END IF
|
||
|
ELSE
|
||
|
*
|
||
|
* B is diagonal.
|
||
|
*
|
||
|
DO 60 J = 1, N
|
||
|
DO 50 I = 1, N
|
||
|
WORK( N+I ) = S( I )*VT( I, J )
|
||
|
50 CONTINUE
|
||
|
CALL CGEMV( 'No transpose', N, N, -CMPLX( ONE ), U, LDU,
|
||
|
$ WORK( N+1 ), 1, CMPLX( ZERO ), WORK, 1 )
|
||
|
WORK( J ) = WORK( J ) + D( J )
|
||
|
RESID = MAX( RESID, SCASUM( N, WORK, 1 ) )
|
||
|
60 CONTINUE
|
||
|
J = ISAMAX( N, D, 1 )
|
||
|
BNORM = ABS( D( J ) )
|
||
|
END IF
|
||
|
*
|
||
|
* Compute norm(B - U * S * V') / ( n * norm(B) * EPS )
|
||
|
*
|
||
|
EPS = SLAMCH( 'Precision' )
|
||
|
*
|
||
|
IF( BNORM.LE.ZERO ) THEN
|
||
|
IF( RESID.NE.ZERO )
|
||
|
$ RESID = ONE / EPS
|
||
|
ELSE
|
||
|
IF( BNORM.GE.RESID ) THEN
|
||
|
RESID = ( RESID / BNORM ) / ( REAL( N )*EPS )
|
||
|
ELSE
|
||
|
IF( BNORM.LT.ONE ) THEN
|
||
|
RESID = ( MIN( RESID, REAL( N )*BNORM ) / BNORM ) /
|
||
|
$ ( REAL( N )*EPS )
|
||
|
ELSE
|
||
|
RESID = MIN( RESID / BNORM, REAL( N ) ) /
|
||
|
$ ( REAL( N )*EPS )
|
||
|
END IF
|
||
|
END IF
|
||
|
END IF
|
||
|
*
|
||
|
RETURN
|
||
|
*
|
||
|
* End of CBDT03
|
||
|
*
|
||
|
END
|