You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
169 lines
4.0 KiB
169 lines
4.0 KiB
2 years ago
|
*> \brief \b CGET10
|
||
|
*
|
||
|
* =========== DOCUMENTATION ===========
|
||
|
*
|
||
|
* Online html documentation available at
|
||
|
* http://www.netlib.org/lapack/explore-html/
|
||
|
*
|
||
|
* Definition:
|
||
|
* ===========
|
||
|
*
|
||
|
* SUBROUTINE CGET10( M, N, A, LDA, B, LDB, WORK, RWORK, RESULT )
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
* INTEGER LDA, LDB, M, N
|
||
|
* REAL RESULT
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
* REAL RWORK( * )
|
||
|
* COMPLEX A( LDA, * ), B( LDB, * ), WORK( * )
|
||
|
* ..
|
||
|
*
|
||
|
*
|
||
|
*> \par Purpose:
|
||
|
* =============
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*> CGET10 compares two matrices A and B and computes the ratio
|
||
|
*> RESULT = norm( A - B ) / ( norm(A) * M * EPS )
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Arguments:
|
||
|
* ==========
|
||
|
*
|
||
|
*> \param[in] M
|
||
|
*> \verbatim
|
||
|
*> M is INTEGER
|
||
|
*> The number of rows of the matrices A and B.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] N
|
||
|
*> \verbatim
|
||
|
*> N is INTEGER
|
||
|
*> The number of columns of the matrices A and B.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] A
|
||
|
*> \verbatim
|
||
|
*> A is COMPLEX array, dimension (LDA,N)
|
||
|
*> The m by n matrix A.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDA
|
||
|
*> \verbatim
|
||
|
*> LDA is INTEGER
|
||
|
*> The leading dimension of the array A. LDA >= max(1,M).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] B
|
||
|
*> \verbatim
|
||
|
*> B is COMPLEX array, dimension (LDB,N)
|
||
|
*> The m by n matrix B.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDB
|
||
|
*> \verbatim
|
||
|
*> LDB is INTEGER
|
||
|
*> The leading dimension of the array B. LDB >= max(1,M).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] WORK
|
||
|
*> \verbatim
|
||
|
*> WORK is COMPLEX array, dimension (M)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] RWORK
|
||
|
*> \verbatim
|
||
|
*> RWORK is COMPLEX array, dimension (M)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] RESULT
|
||
|
*> \verbatim
|
||
|
*> RESULT is REAL
|
||
|
*> RESULT = norm( A - B ) / ( norm(A) * M * EPS )
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Authors:
|
||
|
* ========
|
||
|
*
|
||
|
*> \author Univ. of Tennessee
|
||
|
*> \author Univ. of California Berkeley
|
||
|
*> \author Univ. of Colorado Denver
|
||
|
*> \author NAG Ltd.
|
||
|
*
|
||
|
*> \ingroup complex_eig
|
||
|
*
|
||
|
* =====================================================================
|
||
|
SUBROUTINE CGET10( M, N, A, LDA, B, LDB, WORK, RWORK, RESULT )
|
||
|
*
|
||
|
* -- LAPACK test routine --
|
||
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
INTEGER LDA, LDB, M, N
|
||
|
REAL RESULT
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
REAL RWORK( * )
|
||
|
COMPLEX A( LDA, * ), B( LDB, * ), WORK( * )
|
||
|
* ..
|
||
|
*
|
||
|
* =====================================================================
|
||
|
*
|
||
|
* .. Parameters ..
|
||
|
REAL ONE, ZERO
|
||
|
PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
|
||
|
* ..
|
||
|
* .. Local Scalars ..
|
||
|
INTEGER J
|
||
|
REAL ANORM, EPS, UNFL, WNORM
|
||
|
* ..
|
||
|
* .. External Functions ..
|
||
|
REAL SCASUM, SLAMCH, CLANGE
|
||
|
EXTERNAL SCASUM, SLAMCH, CLANGE
|
||
|
* ..
|
||
|
* .. External Subroutines ..
|
||
|
EXTERNAL CAXPY, CCOPY
|
||
|
* ..
|
||
|
* .. Intrinsic Functions ..
|
||
|
INTRINSIC MAX, MIN, REAL
|
||
|
* ..
|
||
|
* .. Executable Statements ..
|
||
|
*
|
||
|
* Quick return if possible
|
||
|
*
|
||
|
IF( M.LE.0 .OR. N.LE.0 ) THEN
|
||
|
RESULT = ZERO
|
||
|
RETURN
|
||
|
END IF
|
||
|
*
|
||
|
UNFL = SLAMCH( 'Safe minimum' )
|
||
|
EPS = SLAMCH( 'Precision' )
|
||
|
*
|
||
|
WNORM = ZERO
|
||
|
DO 10 J = 1, N
|
||
|
CALL CCOPY( M, A( 1, J ), 1, WORK, 1 )
|
||
|
CALL CAXPY( M, CMPLX( -ONE ), B( 1, J ), 1, WORK, 1 )
|
||
|
WNORM = MAX( WNORM, SCASUM( N, WORK, 1 ) )
|
||
|
10 CONTINUE
|
||
|
*
|
||
|
ANORM = MAX( CLANGE( '1', M, N, A, LDA, RWORK ), UNFL )
|
||
|
*
|
||
|
IF( ANORM.GT.WNORM ) THEN
|
||
|
RESULT = ( WNORM / ANORM ) / ( M*EPS )
|
||
|
ELSE
|
||
|
IF( ANORM.LT.ONE ) THEN
|
||
|
RESULT = ( MIN( WNORM, M*ANORM ) / ANORM ) / ( M*EPS )
|
||
|
ELSE
|
||
|
RESULT = MIN( WNORM / ANORM, REAL( M ) ) / ( M*EPS )
|
||
|
END IF
|
||
|
END IF
|
||
|
*
|
||
|
RETURN
|
||
|
*
|
||
|
* End of CGET10
|
||
|
*
|
||
|
END
|