You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
316 lines
8.3 KiB
316 lines
8.3 KiB
2 years ago
|
*> \brief \b CGET22
|
||
|
*
|
||
|
* =========== DOCUMENTATION ===========
|
||
|
*
|
||
|
* Online html documentation available at
|
||
|
* http://www.netlib.org/lapack/explore-html/
|
||
|
*
|
||
|
* Definition:
|
||
|
* ===========
|
||
|
*
|
||
|
* SUBROUTINE CGET22( TRANSA, TRANSE, TRANSW, N, A, LDA, E, LDE, W,
|
||
|
* WORK, RWORK, RESULT )
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
* CHARACTER TRANSA, TRANSE, TRANSW
|
||
|
* INTEGER LDA, LDE, N
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
* REAL RESULT( 2 ), RWORK( * )
|
||
|
* COMPLEX A( LDA, * ), E( LDE, * ), W( * ), WORK( * )
|
||
|
* ..
|
||
|
*
|
||
|
*
|
||
|
*> \par Purpose:
|
||
|
* =============
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*> CGET22 does an eigenvector check.
|
||
|
*>
|
||
|
*> The basic test is:
|
||
|
*>
|
||
|
*> RESULT(1) = | A E - E W | / ( |A| |E| ulp )
|
||
|
*>
|
||
|
*> using the 1-norm. It also tests the normalization of E:
|
||
|
*>
|
||
|
*> RESULT(2) = max | m-norm(E(j)) - 1 | / ( n ulp )
|
||
|
*> j
|
||
|
*>
|
||
|
*> where E(j) is the j-th eigenvector, and m-norm is the max-norm of a
|
||
|
*> vector. The max-norm of a complex n-vector x in this case is the
|
||
|
*> maximum of |re(x(i)| + |im(x(i)| over i = 1, ..., n.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Arguments:
|
||
|
* ==========
|
||
|
*
|
||
|
*> \param[in] TRANSA
|
||
|
*> \verbatim
|
||
|
*> TRANSA is CHARACTER*1
|
||
|
*> Specifies whether or not A is transposed.
|
||
|
*> = 'N': No transpose
|
||
|
*> = 'T': Transpose
|
||
|
*> = 'C': Conjugate transpose
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] TRANSE
|
||
|
*> \verbatim
|
||
|
*> TRANSE is CHARACTER*1
|
||
|
*> Specifies whether or not E is transposed.
|
||
|
*> = 'N': No transpose, eigenvectors are in columns of E
|
||
|
*> = 'T': Transpose, eigenvectors are in rows of E
|
||
|
*> = 'C': Conjugate transpose, eigenvectors are in rows of E
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] TRANSW
|
||
|
*> \verbatim
|
||
|
*> TRANSW is CHARACTER*1
|
||
|
*> Specifies whether or not W is transposed.
|
||
|
*> = 'N': No transpose
|
||
|
*> = 'T': Transpose, same as TRANSW = 'N'
|
||
|
*> = 'C': Conjugate transpose, use -WI(j) instead of WI(j)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] N
|
||
|
*> \verbatim
|
||
|
*> N is INTEGER
|
||
|
*> The order of the matrix A. N >= 0.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] A
|
||
|
*> \verbatim
|
||
|
*> A is COMPLEX array, dimension (LDA,N)
|
||
|
*> The matrix whose eigenvectors are in E.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDA
|
||
|
*> \verbatim
|
||
|
*> LDA is INTEGER
|
||
|
*> The leading dimension of the array A. LDA >= max(1,N).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] E
|
||
|
*> \verbatim
|
||
|
*> E is COMPLEX array, dimension (LDE,N)
|
||
|
*> The matrix of eigenvectors. If TRANSE = 'N', the eigenvectors
|
||
|
*> are stored in the columns of E, if TRANSE = 'T' or 'C', the
|
||
|
*> eigenvectors are stored in the rows of E.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDE
|
||
|
*> \verbatim
|
||
|
*> LDE is INTEGER
|
||
|
*> The leading dimension of the array E. LDE >= max(1,N).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] W
|
||
|
*> \verbatim
|
||
|
*> W is COMPLEX array, dimension (N)
|
||
|
*> The eigenvalues of A.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] WORK
|
||
|
*> \verbatim
|
||
|
*> WORK is COMPLEX array, dimension (N*N)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] RWORK
|
||
|
*> \verbatim
|
||
|
*> RWORK is REAL array, dimension (N)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] RESULT
|
||
|
*> \verbatim
|
||
|
*> RESULT is REAL array, dimension (2)
|
||
|
*> RESULT(1) = | A E - E W | / ( |A| |E| ulp )
|
||
|
*> RESULT(2) = max | m-norm(E(j)) - 1 | / ( n ulp )
|
||
|
*> j
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Authors:
|
||
|
* ========
|
||
|
*
|
||
|
*> \author Univ. of Tennessee
|
||
|
*> \author Univ. of California Berkeley
|
||
|
*> \author Univ. of Colorado Denver
|
||
|
*> \author NAG Ltd.
|
||
|
*
|
||
|
*> \ingroup complex_eig
|
||
|
*
|
||
|
* =====================================================================
|
||
|
SUBROUTINE CGET22( TRANSA, TRANSE, TRANSW, N, A, LDA, E, LDE, W,
|
||
|
$ WORK, RWORK, RESULT )
|
||
|
*
|
||
|
* -- LAPACK test routine --
|
||
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
CHARACTER TRANSA, TRANSE, TRANSW
|
||
|
INTEGER LDA, LDE, N
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
REAL RESULT( 2 ), RWORK( * )
|
||
|
COMPLEX A( LDA, * ), E( LDE, * ), W( * ), WORK( * )
|
||
|
* ..
|
||
|
*
|
||
|
* =====================================================================
|
||
|
*
|
||
|
* .. Parameters ..
|
||
|
REAL ZERO, ONE
|
||
|
PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
|
||
|
COMPLEX CZERO, CONE
|
||
|
PARAMETER ( CZERO = ( 0.0E+0, 0.0E+0 ),
|
||
|
$ CONE = ( 1.0E+0, 0.0E+0 ) )
|
||
|
* ..
|
||
|
* .. Local Scalars ..
|
||
|
CHARACTER NORMA, NORME
|
||
|
INTEGER ITRNSE, ITRNSW, J, JCOL, JOFF, JROW, JVEC
|
||
|
REAL ANORM, ENORM, ENRMAX, ENRMIN, ERRNRM, TEMP1,
|
||
|
$ ULP, UNFL
|
||
|
COMPLEX WTEMP
|
||
|
* ..
|
||
|
* .. External Functions ..
|
||
|
LOGICAL LSAME
|
||
|
REAL CLANGE, SLAMCH
|
||
|
EXTERNAL LSAME, CLANGE, SLAMCH
|
||
|
* ..
|
||
|
* .. External Subroutines ..
|
||
|
EXTERNAL CGEMM, CLASET
|
||
|
* ..
|
||
|
* .. Intrinsic Functions ..
|
||
|
INTRINSIC ABS, AIMAG, CONJG, MAX, MIN, REAL
|
||
|
* ..
|
||
|
* .. Executable Statements ..
|
||
|
*
|
||
|
* Initialize RESULT (in case N=0)
|
||
|
*
|
||
|
RESULT( 1 ) = ZERO
|
||
|
RESULT( 2 ) = ZERO
|
||
|
IF( N.LE.0 )
|
||
|
$ RETURN
|
||
|
*
|
||
|
UNFL = SLAMCH( 'Safe minimum' )
|
||
|
ULP = SLAMCH( 'Precision' )
|
||
|
*
|
||
|
ITRNSE = 0
|
||
|
ITRNSW = 0
|
||
|
NORMA = 'O'
|
||
|
NORME = 'O'
|
||
|
*
|
||
|
IF( LSAME( TRANSA, 'T' ) .OR. LSAME( TRANSA, 'C' ) ) THEN
|
||
|
NORMA = 'I'
|
||
|
END IF
|
||
|
*
|
||
|
IF( LSAME( TRANSE, 'T' ) ) THEN
|
||
|
ITRNSE = 1
|
||
|
NORME = 'I'
|
||
|
ELSE IF( LSAME( TRANSE, 'C' ) ) THEN
|
||
|
ITRNSE = 2
|
||
|
NORME = 'I'
|
||
|
END IF
|
||
|
*
|
||
|
IF( LSAME( TRANSW, 'C' ) ) THEN
|
||
|
ITRNSW = 1
|
||
|
END IF
|
||
|
*
|
||
|
* Normalization of E:
|
||
|
*
|
||
|
ENRMIN = ONE / ULP
|
||
|
ENRMAX = ZERO
|
||
|
IF( ITRNSE.EQ.0 ) THEN
|
||
|
DO 20 JVEC = 1, N
|
||
|
TEMP1 = ZERO
|
||
|
DO 10 J = 1, N
|
||
|
TEMP1 = MAX( TEMP1, ABS( REAL( E( J, JVEC ) ) )+
|
||
|
$ ABS( AIMAG( E( J, JVEC ) ) ) )
|
||
|
10 CONTINUE
|
||
|
ENRMIN = MIN( ENRMIN, TEMP1 )
|
||
|
ENRMAX = MAX( ENRMAX, TEMP1 )
|
||
|
20 CONTINUE
|
||
|
ELSE
|
||
|
DO 30 JVEC = 1, N
|
||
|
RWORK( JVEC ) = ZERO
|
||
|
30 CONTINUE
|
||
|
*
|
||
|
DO 50 J = 1, N
|
||
|
DO 40 JVEC = 1, N
|
||
|
RWORK( JVEC ) = MAX( RWORK( JVEC ),
|
||
|
$ ABS( REAL( E( JVEC, J ) ) )+
|
||
|
$ ABS( AIMAG( E( JVEC, J ) ) ) )
|
||
|
40 CONTINUE
|
||
|
50 CONTINUE
|
||
|
*
|
||
|
DO 60 JVEC = 1, N
|
||
|
ENRMIN = MIN( ENRMIN, RWORK( JVEC ) )
|
||
|
ENRMAX = MAX( ENRMAX, RWORK( JVEC ) )
|
||
|
60 CONTINUE
|
||
|
END IF
|
||
|
*
|
||
|
* Norm of A:
|
||
|
*
|
||
|
ANORM = MAX( CLANGE( NORMA, N, N, A, LDA, RWORK ), UNFL )
|
||
|
*
|
||
|
* Norm of E:
|
||
|
*
|
||
|
ENORM = MAX( CLANGE( NORME, N, N, E, LDE, RWORK ), ULP )
|
||
|
*
|
||
|
* Norm of error:
|
||
|
*
|
||
|
* Error = AE - EW
|
||
|
*
|
||
|
CALL CLASET( 'Full', N, N, CZERO, CZERO, WORK, N )
|
||
|
*
|
||
|
JOFF = 0
|
||
|
DO 100 JCOL = 1, N
|
||
|
IF( ITRNSW.EQ.0 ) THEN
|
||
|
WTEMP = W( JCOL )
|
||
|
ELSE
|
||
|
WTEMP = CONJG( W( JCOL ) )
|
||
|
END IF
|
||
|
*
|
||
|
IF( ITRNSE.EQ.0 ) THEN
|
||
|
DO 70 JROW = 1, N
|
||
|
WORK( JOFF+JROW ) = E( JROW, JCOL )*WTEMP
|
||
|
70 CONTINUE
|
||
|
ELSE IF( ITRNSE.EQ.1 ) THEN
|
||
|
DO 80 JROW = 1, N
|
||
|
WORK( JOFF+JROW ) = E( JCOL, JROW )*WTEMP
|
||
|
80 CONTINUE
|
||
|
ELSE
|
||
|
DO 90 JROW = 1, N
|
||
|
WORK( JOFF+JROW ) = CONJG( E( JCOL, JROW ) )*WTEMP
|
||
|
90 CONTINUE
|
||
|
END IF
|
||
|
JOFF = JOFF + N
|
||
|
100 CONTINUE
|
||
|
*
|
||
|
CALL CGEMM( TRANSA, TRANSE, N, N, N, CONE, A, LDA, E, LDE, -CONE,
|
||
|
$ WORK, N )
|
||
|
*
|
||
|
ERRNRM = CLANGE( 'One', N, N, WORK, N, RWORK ) / ENORM
|
||
|
*
|
||
|
* Compute RESULT(1) (avoiding under/overflow)
|
||
|
*
|
||
|
IF( ANORM.GT.ERRNRM ) THEN
|
||
|
RESULT( 1 ) = ( ERRNRM / ANORM ) / ULP
|
||
|
ELSE
|
||
|
IF( ANORM.LT.ONE ) THEN
|
||
|
RESULT( 1 ) = ONE / ULP
|
||
|
ELSE
|
||
|
RESULT( 1 ) = MIN( ERRNRM / ANORM, ONE ) / ULP
|
||
|
END IF
|
||
|
END IF
|
||
|
*
|
||
|
* Compute RESULT(2) : the normalization error in E.
|
||
|
*
|
||
|
RESULT( 2 ) = MAX( ABS( ENRMAX-ONE ), ABS( ENRMIN-ONE ) ) /
|
||
|
$ ( REAL( N )*ULP )
|
||
|
*
|
||
|
RETURN
|
||
|
*
|
||
|
* End of CGET22
|
||
|
*
|
||
|
END
|