You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
247 lines
6.3 KiB
247 lines
6.3 KiB
2 years ago
|
*> \brief \b DGET36
|
||
|
*
|
||
|
* =========== DOCUMENTATION ===========
|
||
|
*
|
||
|
* Online html documentation available at
|
||
|
* http://www.netlib.org/lapack/explore-html/
|
||
|
*
|
||
|
* Definition:
|
||
|
* ===========
|
||
|
*
|
||
|
* SUBROUTINE DGET36( RMAX, LMAX, NINFO, KNT, NIN )
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
* INTEGER KNT, LMAX, NIN
|
||
|
* DOUBLE PRECISION RMAX
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
* INTEGER NINFO( 3 )
|
||
|
* ..
|
||
|
*
|
||
|
*
|
||
|
*> \par Purpose:
|
||
|
* =============
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*> DGET36 tests DTREXC, a routine for moving blocks (either 1 by 1 or
|
||
|
*> 2 by 2) on the diagonal of a matrix in real Schur form. Thus, DLAEXC
|
||
|
*> computes an orthogonal matrix Q such that
|
||
|
*>
|
||
|
*> Q' * T1 * Q = T2
|
||
|
*>
|
||
|
*> and where one of the diagonal blocks of T1 (the one at row IFST) has
|
||
|
*> been moved to position ILST.
|
||
|
*>
|
||
|
*> The test code verifies that the residual Q'*T1*Q-T2 is small, that T2
|
||
|
*> is in Schur form, and that the final position of the IFST block is
|
||
|
*> ILST (within +-1).
|
||
|
*>
|
||
|
*> The test matrices are read from a file with logical unit number NIN.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Arguments:
|
||
|
* ==========
|
||
|
*
|
||
|
*> \param[out] RMAX
|
||
|
*> \verbatim
|
||
|
*> RMAX is DOUBLE PRECISION
|
||
|
*> Value of the largest test ratio.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] LMAX
|
||
|
*> \verbatim
|
||
|
*> LMAX is INTEGER
|
||
|
*> Example number where largest test ratio achieved.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] NINFO
|
||
|
*> \verbatim
|
||
|
*> NINFO is INTEGER array, dimension (3)
|
||
|
*> NINFO(J) is the number of examples where INFO=J.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] KNT
|
||
|
*> \verbatim
|
||
|
*> KNT is INTEGER
|
||
|
*> Total number of examples tested.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] NIN
|
||
|
*> \verbatim
|
||
|
*> NIN is INTEGER
|
||
|
*> Input logical unit number.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Authors:
|
||
|
* ========
|
||
|
*
|
||
|
*> \author Univ. of Tennessee
|
||
|
*> \author Univ. of California Berkeley
|
||
|
*> \author Univ. of Colorado Denver
|
||
|
*> \author NAG Ltd.
|
||
|
*
|
||
|
*> \ingroup double_eig
|
||
|
*
|
||
|
* =====================================================================
|
||
|
SUBROUTINE DGET36( RMAX, LMAX, NINFO, KNT, NIN )
|
||
|
*
|
||
|
* -- LAPACK test routine --
|
||
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
INTEGER KNT, LMAX, NIN
|
||
|
DOUBLE PRECISION RMAX
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
INTEGER NINFO( 3 )
|
||
|
* ..
|
||
|
*
|
||
|
* =====================================================================
|
||
|
*
|
||
|
* .. Parameters ..
|
||
|
DOUBLE PRECISION ZERO, ONE
|
||
|
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
|
||
|
INTEGER LDT, LWORK
|
||
|
PARAMETER ( LDT = 10, LWORK = 2*LDT*LDT )
|
||
|
* ..
|
||
|
* .. Local Scalars ..
|
||
|
INTEGER I, IFST, IFST1, IFST2, IFSTSV, ILST, ILST1,
|
||
|
$ ILST2, ILSTSV, INFO1, INFO2, J, LOC, N
|
||
|
DOUBLE PRECISION EPS, RES
|
||
|
* ..
|
||
|
* .. Local Arrays ..
|
||
|
DOUBLE PRECISION Q( LDT, LDT ), RESULT( 2 ), T1( LDT, LDT ),
|
||
|
$ T2( LDT, LDT ), TMP( LDT, LDT ), WORK( LWORK )
|
||
|
* ..
|
||
|
* .. External Functions ..
|
||
|
DOUBLE PRECISION DLAMCH
|
||
|
EXTERNAL DLAMCH
|
||
|
* ..
|
||
|
* .. External Subroutines ..
|
||
|
EXTERNAL DHST01, DLACPY, DLASET, DTREXC
|
||
|
* ..
|
||
|
* .. Intrinsic Functions ..
|
||
|
INTRINSIC ABS, SIGN
|
||
|
* ..
|
||
|
* .. Executable Statements ..
|
||
|
*
|
||
|
EPS = DLAMCH( 'P' )
|
||
|
RMAX = ZERO
|
||
|
LMAX = 0
|
||
|
KNT = 0
|
||
|
NINFO( 1 ) = 0
|
||
|
NINFO( 2 ) = 0
|
||
|
NINFO( 3 ) = 0
|
||
|
*
|
||
|
* Read input data until N=0
|
||
|
*
|
||
|
10 CONTINUE
|
||
|
READ( NIN, FMT = * )N, IFST, ILST
|
||
|
IF( N.EQ.0 )
|
||
|
$ RETURN
|
||
|
KNT = KNT + 1
|
||
|
DO 20 I = 1, N
|
||
|
READ( NIN, FMT = * )( TMP( I, J ), J = 1, N )
|
||
|
20 CONTINUE
|
||
|
CALL DLACPY( 'F', N, N, TMP, LDT, T1, LDT )
|
||
|
CALL DLACPY( 'F', N, N, TMP, LDT, T2, LDT )
|
||
|
IFSTSV = IFST
|
||
|
ILSTSV = ILST
|
||
|
IFST1 = IFST
|
||
|
ILST1 = ILST
|
||
|
IFST2 = IFST
|
||
|
ILST2 = ILST
|
||
|
RES = ZERO
|
||
|
*
|
||
|
* Test without accumulating Q
|
||
|
*
|
||
|
CALL DLASET( 'Full', N, N, ZERO, ONE, Q, LDT )
|
||
|
CALL DTREXC( 'N', N, T1, LDT, Q, LDT, IFST1, ILST1, WORK, INFO1 )
|
||
|
DO 40 I = 1, N
|
||
|
DO 30 J = 1, N
|
||
|
IF( I.EQ.J .AND. Q( I, J ).NE.ONE )
|
||
|
$ RES = RES + ONE / EPS
|
||
|
IF( I.NE.J .AND. Q( I, J ).NE.ZERO )
|
||
|
$ RES = RES + ONE / EPS
|
||
|
30 CONTINUE
|
||
|
40 CONTINUE
|
||
|
*
|
||
|
* Test with accumulating Q
|
||
|
*
|
||
|
CALL DLASET( 'Full', N, N, ZERO, ONE, Q, LDT )
|
||
|
CALL DTREXC( 'V', N, T2, LDT, Q, LDT, IFST2, ILST2, WORK, INFO2 )
|
||
|
*
|
||
|
* Compare T1 with T2
|
||
|
*
|
||
|
DO 60 I = 1, N
|
||
|
DO 50 J = 1, N
|
||
|
IF( T1( I, J ).NE.T2( I, J ) )
|
||
|
$ RES = RES + ONE / EPS
|
||
|
50 CONTINUE
|
||
|
60 CONTINUE
|
||
|
IF( IFST1.NE.IFST2 )
|
||
|
$ RES = RES + ONE / EPS
|
||
|
IF( ILST1.NE.ILST2 )
|
||
|
$ RES = RES + ONE / EPS
|
||
|
IF( INFO1.NE.INFO2 )
|
||
|
$ RES = RES + ONE / EPS
|
||
|
*
|
||
|
* Test for successful reordering of T2
|
||
|
*
|
||
|
IF( INFO2.NE.0 ) THEN
|
||
|
NINFO( INFO2 ) = NINFO( INFO2 ) + 1
|
||
|
ELSE
|
||
|
IF( ABS( IFST2-IFSTSV ).GT.1 )
|
||
|
$ RES = RES + ONE / EPS
|
||
|
IF( ABS( ILST2-ILSTSV ).GT.1 )
|
||
|
$ RES = RES + ONE / EPS
|
||
|
END IF
|
||
|
*
|
||
|
* Test for small residual, and orthogonality of Q
|
||
|
*
|
||
|
CALL DHST01( N, 1, N, TMP, LDT, T2, LDT, Q, LDT, WORK, LWORK,
|
||
|
$ RESULT )
|
||
|
RES = RES + RESULT( 1 ) + RESULT( 2 )
|
||
|
*
|
||
|
* Test for T2 being in Schur form
|
||
|
*
|
||
|
LOC = 1
|
||
|
70 CONTINUE
|
||
|
IF( T2( LOC+1, LOC ).NE.ZERO ) THEN
|
||
|
*
|
||
|
* 2 by 2 block
|
||
|
*
|
||
|
IF( T2( LOC, LOC+1 ).EQ.ZERO .OR. T2( LOC, LOC ).NE.
|
||
|
$ T2( LOC+1, LOC+1 ) .OR. SIGN( ONE, T2( LOC, LOC+1 ) ).EQ.
|
||
|
$ SIGN( ONE, T2( LOC+1, LOC ) ) )RES = RES + ONE / EPS
|
||
|
DO 80 I = LOC + 2, N
|
||
|
IF( T2( I, LOC ).NE.ZERO )
|
||
|
$ RES = RES + ONE / RES
|
||
|
IF( T2( I, LOC+1 ).NE.ZERO )
|
||
|
$ RES = RES + ONE / RES
|
||
|
80 CONTINUE
|
||
|
LOC = LOC + 2
|
||
|
ELSE
|
||
|
*
|
||
|
* 1 by 1 block
|
||
|
*
|
||
|
DO 90 I = LOC + 1, N
|
||
|
IF( T2( I, LOC ).NE.ZERO )
|
||
|
$ RES = RES + ONE / RES
|
||
|
90 CONTINUE
|
||
|
LOC = LOC + 1
|
||
|
END IF
|
||
|
IF( LOC.LT.N )
|
||
|
$ GO TO 70
|
||
|
IF( RES.GT.RMAX ) THEN
|
||
|
RMAX = RES
|
||
|
LMAX = KNT
|
||
|
END IF
|
||
|
GO TO 10
|
||
|
*
|
||
|
* End of DGET36
|
||
|
*
|
||
|
END
|