You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
269 lines
6.8 KiB
269 lines
6.8 KiB
2 years ago
|
*> \brief \b DGET51
|
||
|
*
|
||
|
* =========== DOCUMENTATION ===========
|
||
|
*
|
||
|
* Online html documentation available at
|
||
|
* http://www.netlib.org/lapack/explore-html/
|
||
|
*
|
||
|
* Definition:
|
||
|
* ===========
|
||
|
*
|
||
|
* SUBROUTINE DGET51( ITYPE, N, A, LDA, B, LDB, U, LDU, V, LDV, WORK,
|
||
|
* RESULT )
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
* INTEGER ITYPE, LDA, LDB, LDU, LDV, N
|
||
|
* DOUBLE PRECISION RESULT
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
* DOUBLE PRECISION A( LDA, * ), B( LDB, * ), U( LDU, * ),
|
||
|
* $ V( LDV, * ), WORK( * )
|
||
|
* ..
|
||
|
*
|
||
|
*
|
||
|
*> \par Purpose:
|
||
|
* =============
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*> DGET51 generally checks a decomposition of the form
|
||
|
*>
|
||
|
*> A = U B V'
|
||
|
*>
|
||
|
*> where ' means transpose and U and V are orthogonal.
|
||
|
*>
|
||
|
*> Specifically, if ITYPE=1
|
||
|
*>
|
||
|
*> RESULT = | A - U B V' | / ( |A| n ulp )
|
||
|
*>
|
||
|
*> If ITYPE=2, then:
|
||
|
*>
|
||
|
*> RESULT = | A - B | / ( |A| n ulp )
|
||
|
*>
|
||
|
*> If ITYPE=3, then:
|
||
|
*>
|
||
|
*> RESULT = | I - UU' | / ( n ulp )
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Arguments:
|
||
|
* ==========
|
||
|
*
|
||
|
*> \param[in] ITYPE
|
||
|
*> \verbatim
|
||
|
*> ITYPE is INTEGER
|
||
|
*> Specifies the type of tests to be performed.
|
||
|
*> =1: RESULT = | A - U B V' | / ( |A| n ulp )
|
||
|
*> =2: RESULT = | A - B | / ( |A| n ulp )
|
||
|
*> =3: RESULT = | I - UU' | / ( n ulp )
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] N
|
||
|
*> \verbatim
|
||
|
*> N is INTEGER
|
||
|
*> The size of the matrix. If it is zero, DGET51 does nothing.
|
||
|
*> It must be at least zero.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] A
|
||
|
*> \verbatim
|
||
|
*> A is DOUBLE PRECISION array, dimension (LDA, N)
|
||
|
*> The original (unfactored) matrix.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDA
|
||
|
*> \verbatim
|
||
|
*> LDA is INTEGER
|
||
|
*> The leading dimension of A. It must be at least 1
|
||
|
*> and at least N.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] B
|
||
|
*> \verbatim
|
||
|
*> B is DOUBLE PRECISION array, dimension (LDB, N)
|
||
|
*> The factored matrix.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDB
|
||
|
*> \verbatim
|
||
|
*> LDB is INTEGER
|
||
|
*> The leading dimension of B. It must be at least 1
|
||
|
*> and at least N.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] U
|
||
|
*> \verbatim
|
||
|
*> U is DOUBLE PRECISION array, dimension (LDU, N)
|
||
|
*> The orthogonal matrix on the left-hand side in the
|
||
|
*> decomposition.
|
||
|
*> Not referenced if ITYPE=2
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDU
|
||
|
*> \verbatim
|
||
|
*> LDU is INTEGER
|
||
|
*> The leading dimension of U. LDU must be at least N and
|
||
|
*> at least 1.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] V
|
||
|
*> \verbatim
|
||
|
*> V is DOUBLE PRECISION array, dimension (LDV, N)
|
||
|
*> The orthogonal matrix on the left-hand side in the
|
||
|
*> decomposition.
|
||
|
*> Not referenced if ITYPE=2
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDV
|
||
|
*> \verbatim
|
||
|
*> LDV is INTEGER
|
||
|
*> The leading dimension of V. LDV must be at least N and
|
||
|
*> at least 1.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] WORK
|
||
|
*> \verbatim
|
||
|
*> WORK is DOUBLE PRECISION array, dimension (2*N**2)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] RESULT
|
||
|
*> \verbatim
|
||
|
*> RESULT is DOUBLE PRECISION
|
||
|
*> The values computed by the test specified by ITYPE. The
|
||
|
*> value is currently limited to 1/ulp, to avoid overflow.
|
||
|
*> Errors are flagged by RESULT=10/ulp.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Authors:
|
||
|
* ========
|
||
|
*
|
||
|
*> \author Univ. of Tennessee
|
||
|
*> \author Univ. of California Berkeley
|
||
|
*> \author Univ. of Colorado Denver
|
||
|
*> \author NAG Ltd.
|
||
|
*
|
||
|
*> \ingroup double_eig
|
||
|
*
|
||
|
* =====================================================================
|
||
|
SUBROUTINE DGET51( ITYPE, N, A, LDA, B, LDB, U, LDU, V, LDV, WORK,
|
||
|
$ RESULT )
|
||
|
*
|
||
|
* -- LAPACK test routine --
|
||
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
INTEGER ITYPE, LDA, LDB, LDU, LDV, N
|
||
|
DOUBLE PRECISION RESULT
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
DOUBLE PRECISION A( LDA, * ), B( LDB, * ), U( LDU, * ),
|
||
|
$ V( LDV, * ), WORK( * )
|
||
|
* ..
|
||
|
*
|
||
|
* =====================================================================
|
||
|
*
|
||
|
* .. Parameters ..
|
||
|
DOUBLE PRECISION ZERO, ONE, TEN
|
||
|
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0, TEN = 10.0D0 )
|
||
|
* ..
|
||
|
* .. Local Scalars ..
|
||
|
INTEGER JCOL, JDIAG, JROW
|
||
|
DOUBLE PRECISION ANORM, ULP, UNFL, WNORM
|
||
|
* ..
|
||
|
* .. External Functions ..
|
||
|
DOUBLE PRECISION DLAMCH, DLANGE
|
||
|
EXTERNAL DLAMCH, DLANGE
|
||
|
* ..
|
||
|
* .. External Subroutines ..
|
||
|
EXTERNAL DGEMM, DLACPY
|
||
|
* ..
|
||
|
* .. Intrinsic Functions ..
|
||
|
INTRINSIC DBLE, MAX, MIN
|
||
|
* ..
|
||
|
* .. Executable Statements ..
|
||
|
*
|
||
|
RESULT = ZERO
|
||
|
IF( N.LE.0 )
|
||
|
$ RETURN
|
||
|
*
|
||
|
* Constants
|
||
|
*
|
||
|
UNFL = DLAMCH( 'Safe minimum' )
|
||
|
ULP = DLAMCH( 'Epsilon' )*DLAMCH( 'Base' )
|
||
|
*
|
||
|
* Some Error Checks
|
||
|
*
|
||
|
IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
|
||
|
RESULT = TEN / ULP
|
||
|
RETURN
|
||
|
END IF
|
||
|
*
|
||
|
IF( ITYPE.LE.2 ) THEN
|
||
|
*
|
||
|
* Tests scaled by the norm(A)
|
||
|
*
|
||
|
ANORM = MAX( DLANGE( '1', N, N, A, LDA, WORK ), UNFL )
|
||
|
*
|
||
|
IF( ITYPE.EQ.1 ) THEN
|
||
|
*
|
||
|
* ITYPE=1: Compute W = A - UBV'
|
||
|
*
|
||
|
CALL DLACPY( ' ', N, N, A, LDA, WORK, N )
|
||
|
CALL DGEMM( 'N', 'N', N, N, N, ONE, U, LDU, B, LDB, ZERO,
|
||
|
$ WORK( N**2+1 ), N )
|
||
|
*
|
||
|
CALL DGEMM( 'N', 'C', N, N, N, -ONE, WORK( N**2+1 ), N, V,
|
||
|
$ LDV, ONE, WORK, N )
|
||
|
*
|
||
|
ELSE
|
||
|
*
|
||
|
* ITYPE=2: Compute W = A - B
|
||
|
*
|
||
|
CALL DLACPY( ' ', N, N, B, LDB, WORK, N )
|
||
|
*
|
||
|
DO 20 JCOL = 1, N
|
||
|
DO 10 JROW = 1, N
|
||
|
WORK( JROW+N*( JCOL-1 ) ) = WORK( JROW+N*( JCOL-1 ) )
|
||
|
$ - A( JROW, JCOL )
|
||
|
10 CONTINUE
|
||
|
20 CONTINUE
|
||
|
END IF
|
||
|
*
|
||
|
* Compute norm(W)/ ( ulp*norm(A) )
|
||
|
*
|
||
|
WNORM = DLANGE( '1', N, N, WORK, N, WORK( N**2+1 ) )
|
||
|
*
|
||
|
IF( ANORM.GT.WNORM ) THEN
|
||
|
RESULT = ( WNORM / ANORM ) / ( N*ULP )
|
||
|
ELSE
|
||
|
IF( ANORM.LT.ONE ) THEN
|
||
|
RESULT = ( MIN( WNORM, N*ANORM ) / ANORM ) / ( N*ULP )
|
||
|
ELSE
|
||
|
RESULT = MIN( WNORM / ANORM, DBLE( N ) ) / ( N*ULP )
|
||
|
END IF
|
||
|
END IF
|
||
|
*
|
||
|
ELSE
|
||
|
*
|
||
|
* Tests not scaled by norm(A)
|
||
|
*
|
||
|
* ITYPE=3: Compute UU' - I
|
||
|
*
|
||
|
CALL DGEMM( 'N', 'C', N, N, N, ONE, U, LDU, U, LDU, ZERO, WORK,
|
||
|
$ N )
|
||
|
*
|
||
|
DO 30 JDIAG = 1, N
|
||
|
WORK( ( N+1 )*( JDIAG-1 )+1 ) = WORK( ( N+1 )*( JDIAG-1 )+
|
||
|
$ 1 ) - ONE
|
||
|
30 CONTINUE
|
||
|
*
|
||
|
RESULT = MIN( DLANGE( '1', N, N, WORK, N, WORK( N**2+1 ) ),
|
||
|
$ DBLE( N ) ) / ( N*ULP )
|
||
|
END IF
|
||
|
*
|
||
|
RETURN
|
||
|
*
|
||
|
* End of DGET51
|
||
|
*
|
||
|
END
|