You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
283 lines
7.6 KiB
283 lines
7.6 KiB
2 years ago
|
*> \brief \b DSBT21
|
||
|
*
|
||
|
* =========== DOCUMENTATION ===========
|
||
|
*
|
||
|
* Online html documentation available at
|
||
|
* http://www.netlib.org/lapack/explore-html/
|
||
|
*
|
||
|
* Definition:
|
||
|
* ===========
|
||
|
*
|
||
|
* SUBROUTINE DSBT21( UPLO, N, KA, KS, A, LDA, D, E, U, LDU, WORK,
|
||
|
* RESULT )
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
* CHARACTER UPLO
|
||
|
* INTEGER KA, KS, LDA, LDU, N
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
* DOUBLE PRECISION A( LDA, * ), D( * ), E( * ), RESULT( 2 ),
|
||
|
* $ U( LDU, * ), WORK( * )
|
||
|
* ..
|
||
|
*
|
||
|
*
|
||
|
*> \par Purpose:
|
||
|
* =============
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*> DSBT21 generally checks a decomposition of the form
|
||
|
*>
|
||
|
*> A = U S U**T
|
||
|
*>
|
||
|
*> where **T means transpose, A is symmetric banded, U is
|
||
|
*> orthogonal, and S is diagonal (if KS=0) or symmetric
|
||
|
*> tridiagonal (if KS=1).
|
||
|
*>
|
||
|
*> Specifically:
|
||
|
*>
|
||
|
*> RESULT(1) = | A - U S U**T | / ( |A| n ulp ) and
|
||
|
*> RESULT(2) = | I - U U**T | / ( n ulp )
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Arguments:
|
||
|
* ==========
|
||
|
*
|
||
|
*> \param[in] UPLO
|
||
|
*> \verbatim
|
||
|
*> UPLO is CHARACTER
|
||
|
*> If UPLO='U', the upper triangle of A and V will be used and
|
||
|
*> the (strictly) lower triangle will not be referenced.
|
||
|
*> If UPLO='L', the lower triangle of A and V will be used and
|
||
|
*> the (strictly) upper triangle will not be referenced.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] N
|
||
|
*> \verbatim
|
||
|
*> N is INTEGER
|
||
|
*> The size of the matrix. If it is zero, DSBT21 does nothing.
|
||
|
*> It must be at least zero.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] KA
|
||
|
*> \verbatim
|
||
|
*> KA is INTEGER
|
||
|
*> The bandwidth of the matrix A. It must be at least zero. If
|
||
|
*> it is larger than N-1, then max( 0, N-1 ) will be used.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] KS
|
||
|
*> \verbatim
|
||
|
*> KS is INTEGER
|
||
|
*> The bandwidth of the matrix S. It may only be zero or one.
|
||
|
*> If zero, then S is diagonal, and E is not referenced. If
|
||
|
*> one, then S is symmetric tri-diagonal.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] A
|
||
|
*> \verbatim
|
||
|
*> A is DOUBLE PRECISION array, dimension (LDA, N)
|
||
|
*> The original (unfactored) matrix. It is assumed to be
|
||
|
*> symmetric, and only the upper (UPLO='U') or only the lower
|
||
|
*> (UPLO='L') will be referenced.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDA
|
||
|
*> \verbatim
|
||
|
*> LDA is INTEGER
|
||
|
*> The leading dimension of A. It must be at least 1
|
||
|
*> and at least min( KA, N-1 ).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] D
|
||
|
*> \verbatim
|
||
|
*> D is DOUBLE PRECISION array, dimension (N)
|
||
|
*> The diagonal of the (symmetric tri-) diagonal matrix S.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] E
|
||
|
*> \verbatim
|
||
|
*> E is DOUBLE PRECISION array, dimension (N-1)
|
||
|
*> The off-diagonal of the (symmetric tri-) diagonal matrix S.
|
||
|
*> E(1) is the (1,2) and (2,1) element, E(2) is the (2,3) and
|
||
|
*> (3,2) element, etc.
|
||
|
*> Not referenced if KS=0.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] U
|
||
|
*> \verbatim
|
||
|
*> U is DOUBLE PRECISION array, dimension (LDU, N)
|
||
|
*> The orthogonal matrix in the decomposition, expressed as a
|
||
|
*> dense matrix (i.e., not as a product of Householder
|
||
|
*> transformations, Givens transformations, etc.)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDU
|
||
|
*> \verbatim
|
||
|
*> LDU is INTEGER
|
||
|
*> The leading dimension of U. LDU must be at least N and
|
||
|
*> at least 1.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] WORK
|
||
|
*> \verbatim
|
||
|
*> WORK is DOUBLE PRECISION array, dimension (N**2+N)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] RESULT
|
||
|
*> \verbatim
|
||
|
*> RESULT is DOUBLE PRECISION array, dimension (2)
|
||
|
*> The values computed by the two tests described above. The
|
||
|
*> values are currently limited to 1/ulp, to avoid overflow.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Authors:
|
||
|
* ========
|
||
|
*
|
||
|
*> \author Univ. of Tennessee
|
||
|
*> \author Univ. of California Berkeley
|
||
|
*> \author Univ. of Colorado Denver
|
||
|
*> \author NAG Ltd.
|
||
|
*
|
||
|
*> \ingroup double_eig
|
||
|
*
|
||
|
* =====================================================================
|
||
|
SUBROUTINE DSBT21( UPLO, N, KA, KS, A, LDA, D, E, U, LDU, WORK,
|
||
|
$ RESULT )
|
||
|
*
|
||
|
* -- LAPACK test routine --
|
||
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
CHARACTER UPLO
|
||
|
INTEGER KA, KS, LDA, LDU, N
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
DOUBLE PRECISION A( LDA, * ), D( * ), E( * ), RESULT( 2 ),
|
||
|
$ U( LDU, * ), WORK( * )
|
||
|
* ..
|
||
|
*
|
||
|
* =====================================================================
|
||
|
*
|
||
|
* .. Parameters ..
|
||
|
DOUBLE PRECISION ZERO, ONE
|
||
|
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
|
||
|
* ..
|
||
|
* .. Local Scalars ..
|
||
|
LOGICAL LOWER
|
||
|
CHARACTER CUPLO
|
||
|
INTEGER IKA, J, JC, JR, LW
|
||
|
DOUBLE PRECISION ANORM, ULP, UNFL, WNORM
|
||
|
* ..
|
||
|
* .. External Functions ..
|
||
|
LOGICAL LSAME
|
||
|
DOUBLE PRECISION DLAMCH, DLANGE, DLANSB, DLANSP
|
||
|
EXTERNAL LSAME, DLAMCH, DLANGE, DLANSB, DLANSP
|
||
|
* ..
|
||
|
* .. External Subroutines ..
|
||
|
EXTERNAL DGEMM, DSPR, DSPR2
|
||
|
* ..
|
||
|
* .. Intrinsic Functions ..
|
||
|
INTRINSIC DBLE, MAX, MIN
|
||
|
* ..
|
||
|
* .. Executable Statements ..
|
||
|
*
|
||
|
* Constants
|
||
|
*
|
||
|
RESULT( 1 ) = ZERO
|
||
|
RESULT( 2 ) = ZERO
|
||
|
IF( N.LE.0 )
|
||
|
$ RETURN
|
||
|
*
|
||
|
IKA = MAX( 0, MIN( N-1, KA ) )
|
||
|
LW = ( N*( N+1 ) ) / 2
|
||
|
*
|
||
|
IF( LSAME( UPLO, 'U' ) ) THEN
|
||
|
LOWER = .FALSE.
|
||
|
CUPLO = 'U'
|
||
|
ELSE
|
||
|
LOWER = .TRUE.
|
||
|
CUPLO = 'L'
|
||
|
END IF
|
||
|
*
|
||
|
UNFL = DLAMCH( 'Safe minimum' )
|
||
|
ULP = DLAMCH( 'Epsilon' )*DLAMCH( 'Base' )
|
||
|
*
|
||
|
* Some Error Checks
|
||
|
*
|
||
|
* Do Test 1
|
||
|
*
|
||
|
* Norm of A:
|
||
|
*
|
||
|
ANORM = MAX( DLANSB( '1', CUPLO, N, IKA, A, LDA, WORK ), UNFL )
|
||
|
*
|
||
|
* Compute error matrix: Error = A - U S U**T
|
||
|
*
|
||
|
* Copy A from SB to SP storage format.
|
||
|
*
|
||
|
J = 0
|
||
|
DO 50 JC = 1, N
|
||
|
IF( LOWER ) THEN
|
||
|
DO 10 JR = 1, MIN( IKA+1, N+1-JC )
|
||
|
J = J + 1
|
||
|
WORK( J ) = A( JR, JC )
|
||
|
10 CONTINUE
|
||
|
DO 20 JR = IKA + 2, N + 1 - JC
|
||
|
J = J + 1
|
||
|
WORK( J ) = ZERO
|
||
|
20 CONTINUE
|
||
|
ELSE
|
||
|
DO 30 JR = IKA + 2, JC
|
||
|
J = J + 1
|
||
|
WORK( J ) = ZERO
|
||
|
30 CONTINUE
|
||
|
DO 40 JR = MIN( IKA, JC-1 ), 0, -1
|
||
|
J = J + 1
|
||
|
WORK( J ) = A( IKA+1-JR, JC )
|
||
|
40 CONTINUE
|
||
|
END IF
|
||
|
50 CONTINUE
|
||
|
*
|
||
|
DO 60 J = 1, N
|
||
|
CALL DSPR( CUPLO, N, -D( J ), U( 1, J ), 1, WORK )
|
||
|
60 CONTINUE
|
||
|
*
|
||
|
IF( N.GT.1 .AND. KS.EQ.1 ) THEN
|
||
|
DO 70 J = 1, N - 1
|
||
|
CALL DSPR2( CUPLO, N, -E( J ), U( 1, J ), 1, U( 1, J+1 ), 1,
|
||
|
$ WORK )
|
||
|
70 CONTINUE
|
||
|
END IF
|
||
|
WNORM = DLANSP( '1', CUPLO, N, WORK, WORK( LW+1 ) )
|
||
|
*
|
||
|
IF( ANORM.GT.WNORM ) THEN
|
||
|
RESULT( 1 ) = ( WNORM / ANORM ) / ( N*ULP )
|
||
|
ELSE
|
||
|
IF( ANORM.LT.ONE ) THEN
|
||
|
RESULT( 1 ) = ( MIN( WNORM, N*ANORM ) / ANORM ) / ( N*ULP )
|
||
|
ELSE
|
||
|
RESULT( 1 ) = MIN( WNORM / ANORM, DBLE( N ) ) / ( N*ULP )
|
||
|
END IF
|
||
|
END IF
|
||
|
*
|
||
|
* Do Test 2
|
||
|
*
|
||
|
* Compute U U**T - I
|
||
|
*
|
||
|
CALL DGEMM( 'N', 'C', N, N, N, ONE, U, LDU, U, LDU, ZERO, WORK,
|
||
|
$ N )
|
||
|
*
|
||
|
DO 80 J = 1, N
|
||
|
WORK( ( N+1 )*( J-1 )+1 ) = WORK( ( N+1 )*( J-1 )+1 ) - ONE
|
||
|
80 CONTINUE
|
||
|
*
|
||
|
RESULT( 2 ) = MIN( DLANGE( '1', N, N, WORK, N, WORK( N**2+1 ) ),
|
||
|
$ DBLE( N ) ) / ( N*ULP )
|
||
|
*
|
||
|
RETURN
|
||
|
*
|
||
|
* End of DSBT21
|
||
|
*
|
||
|
END
|