Cloned library LAPACK-3.11.0 with extra build files for internal package management.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

381 lines
12 KiB

2 years ago
*> \brief \b SGET52
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE SGET52( LEFT, N, A, LDA, B, LDB, E, LDE, ALPHAR,
* ALPHAI, BETA, WORK, RESULT )
*
* .. Scalar Arguments ..
* LOGICAL LEFT
* INTEGER LDA, LDB, LDE, N
* ..
* .. Array Arguments ..
* REAL A( LDA, * ), ALPHAI( * ), ALPHAR( * ),
* $ B( LDB, * ), BETA( * ), E( LDE, * ),
* $ RESULT( 2 ), WORK( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> SGET52 does an eigenvector check for the generalized eigenvalue
*> problem.
*>
*> The basic test for right eigenvectors is:
*>
*> | b(j) A E(j) - a(j) B E(j) |
*> RESULT(1) = max -------------------------------
*> j n ulp max( |b(j) A|, |a(j) B| )
*>
*> using the 1-norm. Here, a(j)/b(j) = w is the j-th generalized
*> eigenvalue of A - w B, or, equivalently, b(j)/a(j) = m is the j-th
*> generalized eigenvalue of m A - B.
*>
*> For real eigenvalues, the test is straightforward. For complex
*> eigenvalues, E(j) and a(j) are complex, represented by
*> Er(j) + i*Ei(j) and ar(j) + i*ai(j), resp., so the test for that
*> eigenvector becomes
*>
*> max( |Wr|, |Wi| )
*> --------------------------------------------
*> n ulp max( |b(j) A|, (|ar(j)|+|ai(j)|) |B| )
*>
*> where
*>
*> Wr = b(j) A Er(j) - ar(j) B Er(j) + ai(j) B Ei(j)
*>
*> Wi = b(j) A Ei(j) - ai(j) B Er(j) - ar(j) B Ei(j)
*>
*> T T _
*> For left eigenvectors, A , B , a, and b are used.
*>
*> SGET52 also tests the normalization of E. Each eigenvector is
*> supposed to be normalized so that the maximum "absolute value"
*> of its elements is 1, where in this case, "absolute value"
*> of a complex value x is |Re(x)| + |Im(x)| ; let us call this
*> maximum "absolute value" norm of a vector v M(v).
*> if a(j)=b(j)=0, then the eigenvector is set to be the jth coordinate
*> vector. The normalization test is:
*>
*> RESULT(2) = max | M(v(j)) - 1 | / ( n ulp )
*> eigenvectors v(j)
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] LEFT
*> \verbatim
*> LEFT is LOGICAL
*> =.TRUE.: The eigenvectors in the columns of E are assumed
*> to be *left* eigenvectors.
*> =.FALSE.: The eigenvectors in the columns of E are assumed
*> to be *right* eigenvectors.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The size of the matrices. If it is zero, SGET52 does
*> nothing. It must be at least zero.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*> A is REAL array, dimension (LDA, N)
*> The matrix A.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of A. It must be at least 1
*> and at least N.
*> \endverbatim
*>
*> \param[in] B
*> \verbatim
*> B is REAL array, dimension (LDB, N)
*> The matrix B.
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*> LDB is INTEGER
*> The leading dimension of B. It must be at least 1
*> and at least N.
*> \endverbatim
*>
*> \param[in] E
*> \verbatim
*> E is REAL array, dimension (LDE, N)
*> The matrix of eigenvectors. It must be O( 1 ). Complex
*> eigenvalues and eigenvectors always come in pairs, the
*> eigenvalue and its conjugate being stored in adjacent
*> elements of ALPHAR, ALPHAI, and BETA. Thus, if a(j)/b(j)
*> and a(j+1)/b(j+1) are a complex conjugate pair of
*> generalized eigenvalues, then E(,j) contains the real part
*> of the eigenvector and E(,j+1) contains the imaginary part.
*> Note that whether E(,j) is a real eigenvector or part of a
*> complex one is specified by whether ALPHAI(j) is zero or not.
*> \endverbatim
*>
*> \param[in] LDE
*> \verbatim
*> LDE is INTEGER
*> The leading dimension of E. It must be at least 1 and at
*> least N.
*> \endverbatim
*>
*> \param[in] ALPHAR
*> \verbatim
*> ALPHAR is REAL array, dimension (N)
*> The real parts of the values a(j) as described above, which,
*> along with b(j), define the generalized eigenvalues.
*> Complex eigenvalues always come in complex conjugate pairs
*> a(j)/b(j) and a(j+1)/b(j+1), which are stored in adjacent
*> elements in ALPHAR, ALPHAI, and BETA. Thus, if the j-th
*> and (j+1)-st eigenvalues form a pair, ALPHAR(j+1)/BETA(j+1)
*> is assumed to be equal to ALPHAR(j)/BETA(j).
*> \endverbatim
*>
*> \param[in] ALPHAI
*> \verbatim
*> ALPHAI is REAL array, dimension (N)
*> The imaginary parts of the values a(j) as described above,
*> which, along with b(j), define the generalized eigenvalues.
*> If ALPHAI(j)=0, then the eigenvalue is real, otherwise it
*> is part of a complex conjugate pair. Complex eigenvalues
*> always come in complex conjugate pairs a(j)/b(j) and
*> a(j+1)/b(j+1), which are stored in adjacent elements in
*> ALPHAR, ALPHAI, and BETA. Thus, if the j-th and (j+1)-st
*> eigenvalues form a pair, ALPHAI(j+1)/BETA(j+1) is assumed to
*> be equal to -ALPHAI(j)/BETA(j). Also, nonzero values in
*> ALPHAI are assumed to always come in adjacent pairs.
*> \endverbatim
*>
*> \param[in] BETA
*> \verbatim
*> BETA is REAL array, dimension (N)
*> The values b(j) as described above, which, along with a(j),
*> define the generalized eigenvalues.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is REAL array, dimension (N**2+N)
*> \endverbatim
*>
*> \param[out] RESULT
*> \verbatim
*> RESULT is REAL array, dimension (2)
*> The values computed by the test described above. If A E or
*> B E is likely to overflow, then RESULT(1:2) is set to
*> 10 / ulp.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup single_eig
*
* =====================================================================
SUBROUTINE SGET52( LEFT, N, A, LDA, B, LDB, E, LDE, ALPHAR,
$ ALPHAI, BETA, WORK, RESULT )
*
* -- LAPACK test routine --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
LOGICAL LEFT
INTEGER LDA, LDB, LDE, N
* ..
* .. Array Arguments ..
REAL A( LDA, * ), ALPHAI( * ), ALPHAR( * ),
$ B( LDB, * ), BETA( * ), E( LDE, * ),
$ RESULT( 2 ), WORK( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
REAL ZERO, ONE, TEN
PARAMETER ( ZERO = 0.0, ONE = 1.0, TEN = 10.0 )
* ..
* .. Local Scalars ..
LOGICAL ILCPLX
CHARACTER NORMAB, TRANS
INTEGER J, JVEC
REAL ABMAX, ACOEF, ALFMAX, ANORM, BCOEFI, BCOEFR,
$ BETMAX, BNORM, ENORM, ENRMER, ERRNRM, SAFMAX,
$ SAFMIN, SALFI, SALFR, SBETA, SCALE, TEMP1, ULP
* ..
* .. External Functions ..
REAL SLAMCH, SLANGE
EXTERNAL SLAMCH, SLANGE
* ..
* .. External Subroutines ..
EXTERNAL SGEMV
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, MAX, REAL
* ..
* .. Executable Statements ..
*
RESULT( 1 ) = ZERO
RESULT( 2 ) = ZERO
IF( N.LE.0 )
$ RETURN
*
SAFMIN = SLAMCH( 'Safe minimum' )
SAFMAX = ONE / SAFMIN
ULP = SLAMCH( 'Epsilon' )*SLAMCH( 'Base' )
*
IF( LEFT ) THEN
TRANS = 'T'
NORMAB = 'I'
ELSE
TRANS = 'N'
NORMAB = 'O'
END IF
*
* Norm of A, B, and E:
*
ANORM = MAX( SLANGE( NORMAB, N, N, A, LDA, WORK ), SAFMIN )
BNORM = MAX( SLANGE( NORMAB, N, N, B, LDB, WORK ), SAFMIN )
ENORM = MAX( SLANGE( 'O', N, N, E, LDE, WORK ), ULP )
ALFMAX = SAFMAX / MAX( ONE, BNORM )
BETMAX = SAFMAX / MAX( ONE, ANORM )
*
* Compute error matrix.
* Column i = ( b(i) A - a(i) B ) E(i) / max( |a(i) B|, |b(i) A| )
*
ILCPLX = .FALSE.
DO 10 JVEC = 1, N
IF( ILCPLX ) THEN
*
* 2nd Eigenvalue/-vector of pair -- do nothing
*
ILCPLX = .FALSE.
ELSE
SALFR = ALPHAR( JVEC )
SALFI = ALPHAI( JVEC )
SBETA = BETA( JVEC )
IF( SALFI.EQ.ZERO ) THEN
*
* Real eigenvalue and -vector
*
ABMAX = MAX( ABS( SALFR ), ABS( SBETA ) )
IF( ABS( SALFR ).GT.ALFMAX .OR. ABS( SBETA ).GT.
$ BETMAX .OR. ABMAX.LT.ONE ) THEN
SCALE = ONE / MAX( ABMAX, SAFMIN )
SALFR = SCALE*SALFR
SBETA = SCALE*SBETA
END IF
SCALE = ONE / MAX( ABS( SALFR )*BNORM,
$ ABS( SBETA )*ANORM, SAFMIN )
ACOEF = SCALE*SBETA
BCOEFR = SCALE*SALFR
CALL SGEMV( TRANS, N, N, ACOEF, A, LDA, E( 1, JVEC ), 1,
$ ZERO, WORK( N*( JVEC-1 )+1 ), 1 )
CALL SGEMV( TRANS, N, N, -BCOEFR, B, LDA, E( 1, JVEC ),
$ 1, ONE, WORK( N*( JVEC-1 )+1 ), 1 )
ELSE
*
* Complex conjugate pair
*
ILCPLX = .TRUE.
IF( JVEC.EQ.N ) THEN
RESULT( 1 ) = TEN / ULP
RETURN
END IF
ABMAX = MAX( ABS( SALFR )+ABS( SALFI ), ABS( SBETA ) )
IF( ABS( SALFR )+ABS( SALFI ).GT.ALFMAX .OR.
$ ABS( SBETA ).GT.BETMAX .OR. ABMAX.LT.ONE ) THEN
SCALE = ONE / MAX( ABMAX, SAFMIN )
SALFR = SCALE*SALFR
SALFI = SCALE*SALFI
SBETA = SCALE*SBETA
END IF
SCALE = ONE / MAX( ( ABS( SALFR )+ABS( SALFI ) )*BNORM,
$ ABS( SBETA )*ANORM, SAFMIN )
ACOEF = SCALE*SBETA
BCOEFR = SCALE*SALFR
BCOEFI = SCALE*SALFI
IF( LEFT ) THEN
BCOEFI = -BCOEFI
END IF
*
CALL SGEMV( TRANS, N, N, ACOEF, A, LDA, E( 1, JVEC ), 1,
$ ZERO, WORK( N*( JVEC-1 )+1 ), 1 )
CALL SGEMV( TRANS, N, N, -BCOEFR, B, LDA, E( 1, JVEC ),
$ 1, ONE, WORK( N*( JVEC-1 )+1 ), 1 )
CALL SGEMV( TRANS, N, N, BCOEFI, B, LDA, E( 1, JVEC+1 ),
$ 1, ONE, WORK( N*( JVEC-1 )+1 ), 1 )
*
CALL SGEMV( TRANS, N, N, ACOEF, A, LDA, E( 1, JVEC+1 ),
$ 1, ZERO, WORK( N*JVEC+1 ), 1 )
CALL SGEMV( TRANS, N, N, -BCOEFI, B, LDA, E( 1, JVEC ),
$ 1, ONE, WORK( N*JVEC+1 ), 1 )
CALL SGEMV( TRANS, N, N, -BCOEFR, B, LDA, E( 1, JVEC+1 ),
$ 1, ONE, WORK( N*JVEC+1 ), 1 )
END IF
END IF
10 CONTINUE
*
ERRNRM = SLANGE( 'One', N, N, WORK, N, WORK( N**2+1 ) ) / ENORM
*
* Compute RESULT(1)
*
RESULT( 1 ) = ERRNRM / ULP
*
* Normalization of E:
*
ENRMER = ZERO
ILCPLX = .FALSE.
DO 40 JVEC = 1, N
IF( ILCPLX ) THEN
ILCPLX = .FALSE.
ELSE
TEMP1 = ZERO
IF( ALPHAI( JVEC ).EQ.ZERO ) THEN
DO 20 J = 1, N
TEMP1 = MAX( TEMP1, ABS( E( J, JVEC ) ) )
20 CONTINUE
ENRMER = MAX( ENRMER, ABS( TEMP1-ONE ) )
ELSE
ILCPLX = .TRUE.
DO 30 J = 1, N
TEMP1 = MAX( TEMP1, ABS( E( J, JVEC ) )+
$ ABS( E( J, JVEC+1 ) ) )
30 CONTINUE
ENRMER = MAX( ENRMER, ABS( TEMP1-ONE ) )
END IF
END IF
40 CONTINUE
*
* Compute RESULT(2) : the normalization error in E.
*
RESULT( 2 ) = ENRMER / ( REAL( N )*ULP )
*
RETURN
*
* End of SGET52
*
END