You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
290 lines
8.3 KiB
290 lines
8.3 KiB
2 years ago
|
*> \brief \b ZGET52
|
||
|
*
|
||
|
* =========== DOCUMENTATION ===========
|
||
|
*
|
||
|
* Online html documentation available at
|
||
|
* http://www.netlib.org/lapack/explore-html/
|
||
|
*
|
||
|
* Definition:
|
||
|
* ===========
|
||
|
*
|
||
|
* SUBROUTINE ZGET52( LEFT, N, A, LDA, B, LDB, E, LDE, ALPHA, BETA,
|
||
|
* WORK, RWORK, RESULT )
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
* LOGICAL LEFT
|
||
|
* INTEGER LDA, LDB, LDE, N
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
* DOUBLE PRECISION RESULT( 2 ), RWORK( * )
|
||
|
* COMPLEX*16 A( LDA, * ), ALPHA( * ), B( LDB, * ),
|
||
|
* $ BETA( * ), E( LDE, * ), WORK( * )
|
||
|
* ..
|
||
|
*
|
||
|
*
|
||
|
*> \par Purpose:
|
||
|
* =============
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*> ZGET52 does an eigenvector check for the generalized eigenvalue
|
||
|
*> problem.
|
||
|
*>
|
||
|
*> The basic test for right eigenvectors is:
|
||
|
*>
|
||
|
*> | b(i) A E(i) - a(i) B E(i) |
|
||
|
*> RESULT(1) = max -------------------------------
|
||
|
*> i n ulp max( |b(i) A|, |a(i) B| )
|
||
|
*>
|
||
|
*> using the 1-norm. Here, a(i)/b(i) = w is the i-th generalized
|
||
|
*> eigenvalue of A - w B, or, equivalently, b(i)/a(i) = m is the i-th
|
||
|
*> generalized eigenvalue of m A - B.
|
||
|
*>
|
||
|
*> H H _ _
|
||
|
*> For left eigenvectors, A , B , a, and b are used.
|
||
|
*>
|
||
|
*> ZGET52 also tests the normalization of E. Each eigenvector is
|
||
|
*> supposed to be normalized so that the maximum "absolute value"
|
||
|
*> of its elements is 1, where in this case, "absolute value"
|
||
|
*> of a complex value x is |Re(x)| + |Im(x)| ; let us call this
|
||
|
*> maximum "absolute value" norm of a vector v M(v).
|
||
|
*> If a(i)=b(i)=0, then the eigenvector is set to be the jth coordinate
|
||
|
*> vector. The normalization test is:
|
||
|
*>
|
||
|
*> RESULT(2) = max | M(v(i)) - 1 | / ( n ulp )
|
||
|
*> eigenvectors v(i)
|
||
|
*>
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Arguments:
|
||
|
* ==========
|
||
|
*
|
||
|
*> \param[in] LEFT
|
||
|
*> \verbatim
|
||
|
*> LEFT is LOGICAL
|
||
|
*> =.TRUE.: The eigenvectors in the columns of E are assumed
|
||
|
*> to be *left* eigenvectors.
|
||
|
*> =.FALSE.: The eigenvectors in the columns of E are assumed
|
||
|
*> to be *right* eigenvectors.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] N
|
||
|
*> \verbatim
|
||
|
*> N is INTEGER
|
||
|
*> The size of the matrices. If it is zero, ZGET52 does
|
||
|
*> nothing. It must be at least zero.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] A
|
||
|
*> \verbatim
|
||
|
*> A is COMPLEX*16 array, dimension (LDA, N)
|
||
|
*> The matrix A.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDA
|
||
|
*> \verbatim
|
||
|
*> LDA is INTEGER
|
||
|
*> The leading dimension of A. It must be at least 1
|
||
|
*> and at least N.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] B
|
||
|
*> \verbatim
|
||
|
*> B is COMPLEX*16 array, dimension (LDB, N)
|
||
|
*> The matrix B.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDB
|
||
|
*> \verbatim
|
||
|
*> LDB is INTEGER
|
||
|
*> The leading dimension of B. It must be at least 1
|
||
|
*> and at least N.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] E
|
||
|
*> \verbatim
|
||
|
*> E is COMPLEX*16 array, dimension (LDE, N)
|
||
|
*> The matrix of eigenvectors. It must be O( 1 ).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDE
|
||
|
*> \verbatim
|
||
|
*> LDE is INTEGER
|
||
|
*> The leading dimension of E. It must be at least 1 and at
|
||
|
*> least N.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] ALPHA
|
||
|
*> \verbatim
|
||
|
*> ALPHA is COMPLEX*16 array, dimension (N)
|
||
|
*> The values a(i) as described above, which, along with b(i),
|
||
|
*> define the generalized eigenvalues.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] BETA
|
||
|
*> \verbatim
|
||
|
*> BETA is COMPLEX*16 array, dimension (N)
|
||
|
*> The values b(i) as described above, which, along with a(i),
|
||
|
*> define the generalized eigenvalues.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] WORK
|
||
|
*> \verbatim
|
||
|
*> WORK is COMPLEX*16 array, dimension (N**2)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] RWORK
|
||
|
*> \verbatim
|
||
|
*> RWORK is DOUBLE PRECISION array, dimension (N)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] RESULT
|
||
|
*> \verbatim
|
||
|
*> RESULT is DOUBLE PRECISION array, dimension (2)
|
||
|
*> The values computed by the test described above. If A E or
|
||
|
*> B E is likely to overflow, then RESULT(1:2) is set to
|
||
|
*> 10 / ulp.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Authors:
|
||
|
* ========
|
||
|
*
|
||
|
*> \author Univ. of Tennessee
|
||
|
*> \author Univ. of California Berkeley
|
||
|
*> \author Univ. of Colorado Denver
|
||
|
*> \author NAG Ltd.
|
||
|
*
|
||
|
*> \ingroup complex16_eig
|
||
|
*
|
||
|
* =====================================================================
|
||
|
SUBROUTINE ZGET52( LEFT, N, A, LDA, B, LDB, E, LDE, ALPHA, BETA,
|
||
|
$ WORK, RWORK, RESULT )
|
||
|
*
|
||
|
* -- LAPACK test routine --
|
||
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
LOGICAL LEFT
|
||
|
INTEGER LDA, LDB, LDE, N
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
DOUBLE PRECISION RESULT( 2 ), RWORK( * )
|
||
|
COMPLEX*16 A( LDA, * ), ALPHA( * ), B( LDB, * ),
|
||
|
$ BETA( * ), E( LDE, * ), WORK( * )
|
||
|
* ..
|
||
|
*
|
||
|
* =====================================================================
|
||
|
*
|
||
|
* .. Parameters ..
|
||
|
DOUBLE PRECISION ZERO, ONE
|
||
|
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
|
||
|
COMPLEX*16 CZERO, CONE
|
||
|
PARAMETER ( CZERO = ( 0.0D+0, 0.0D+0 ),
|
||
|
$ CONE = ( 1.0D+0, 0.0D+0 ) )
|
||
|
* ..
|
||
|
* .. Local Scalars ..
|
||
|
CHARACTER NORMAB, TRANS
|
||
|
INTEGER J, JVEC
|
||
|
DOUBLE PRECISION ABMAX, ALFMAX, ANORM, BETMAX, BNORM, ENORM,
|
||
|
$ ENRMER, ERRNRM, SAFMAX, SAFMIN, SCALE, TEMP1,
|
||
|
$ ULP
|
||
|
COMPLEX*16 ACOEFF, ALPHAI, BCOEFF, BETAI, X
|
||
|
* ..
|
||
|
* .. External Functions ..
|
||
|
DOUBLE PRECISION DLAMCH, ZLANGE
|
||
|
EXTERNAL DLAMCH, ZLANGE
|
||
|
* ..
|
||
|
* .. External Subroutines ..
|
||
|
EXTERNAL ZGEMV
|
||
|
* ..
|
||
|
* .. Intrinsic Functions ..
|
||
|
INTRINSIC ABS, DBLE, DCONJG, DIMAG, MAX
|
||
|
* ..
|
||
|
* .. Statement Functions ..
|
||
|
DOUBLE PRECISION ABS1
|
||
|
* ..
|
||
|
* .. Statement Function definitions ..
|
||
|
ABS1( X ) = ABS( DBLE( X ) ) + ABS( DIMAG( X ) )
|
||
|
* ..
|
||
|
* .. Executable Statements ..
|
||
|
*
|
||
|
RESULT( 1 ) = ZERO
|
||
|
RESULT( 2 ) = ZERO
|
||
|
IF( N.LE.0 )
|
||
|
$ RETURN
|
||
|
*
|
||
|
SAFMIN = DLAMCH( 'Safe minimum' )
|
||
|
SAFMAX = ONE / SAFMIN
|
||
|
ULP = DLAMCH( 'Epsilon' )*DLAMCH( 'Base' )
|
||
|
*
|
||
|
IF( LEFT ) THEN
|
||
|
TRANS = 'C'
|
||
|
NORMAB = 'I'
|
||
|
ELSE
|
||
|
TRANS = 'N'
|
||
|
NORMAB = 'O'
|
||
|
END IF
|
||
|
*
|
||
|
* Norm of A, B, and E:
|
||
|
*
|
||
|
ANORM = MAX( ZLANGE( NORMAB, N, N, A, LDA, RWORK ), SAFMIN )
|
||
|
BNORM = MAX( ZLANGE( NORMAB, N, N, B, LDB, RWORK ), SAFMIN )
|
||
|
ENORM = MAX( ZLANGE( 'O', N, N, E, LDE, RWORK ), ULP )
|
||
|
ALFMAX = SAFMAX / MAX( ONE, BNORM )
|
||
|
BETMAX = SAFMAX / MAX( ONE, ANORM )
|
||
|
*
|
||
|
* Compute error matrix.
|
||
|
* Column i = ( b(i) A - a(i) B ) E(i) / max( |a(i) B|, |b(i) A| )
|
||
|
*
|
||
|
DO 10 JVEC = 1, N
|
||
|
ALPHAI = ALPHA( JVEC )
|
||
|
BETAI = BETA( JVEC )
|
||
|
ABMAX = MAX( ABS1( ALPHAI ), ABS1( BETAI ) )
|
||
|
IF( ABS1( ALPHAI ).GT.ALFMAX .OR. ABS1( BETAI ).GT.BETMAX .OR.
|
||
|
$ ABMAX.LT.ONE ) THEN
|
||
|
SCALE = ONE / MAX( ABMAX, SAFMIN )
|
||
|
ALPHAI = SCALE*ALPHAI
|
||
|
BETAI = SCALE*BETAI
|
||
|
END IF
|
||
|
SCALE = ONE / MAX( ABS1( ALPHAI )*BNORM, ABS1( BETAI )*ANORM,
|
||
|
$ SAFMIN )
|
||
|
ACOEFF = SCALE*BETAI
|
||
|
BCOEFF = SCALE*ALPHAI
|
||
|
IF( LEFT ) THEN
|
||
|
ACOEFF = DCONJG( ACOEFF )
|
||
|
BCOEFF = DCONJG( BCOEFF )
|
||
|
END IF
|
||
|
CALL ZGEMV( TRANS, N, N, ACOEFF, A, LDA, E( 1, JVEC ), 1,
|
||
|
$ CZERO, WORK( N*( JVEC-1 )+1 ), 1 )
|
||
|
CALL ZGEMV( TRANS, N, N, -BCOEFF, B, LDA, E( 1, JVEC ), 1,
|
||
|
$ CONE, WORK( N*( JVEC-1 )+1 ), 1 )
|
||
|
10 CONTINUE
|
||
|
*
|
||
|
ERRNRM = ZLANGE( 'One', N, N, WORK, N, RWORK ) / ENORM
|
||
|
*
|
||
|
* Compute RESULT(1)
|
||
|
*
|
||
|
RESULT( 1 ) = ERRNRM / ULP
|
||
|
*
|
||
|
* Normalization of E:
|
||
|
*
|
||
|
ENRMER = ZERO
|
||
|
DO 30 JVEC = 1, N
|
||
|
TEMP1 = ZERO
|
||
|
DO 20 J = 1, N
|
||
|
TEMP1 = MAX( TEMP1, ABS1( E( J, JVEC ) ) )
|
||
|
20 CONTINUE
|
||
|
ENRMER = MAX( ENRMER, ABS( TEMP1-ONE ) )
|
||
|
30 CONTINUE
|
||
|
*
|
||
|
* Compute RESULT(2) : the normalization error in E.
|
||
|
*
|
||
|
RESULT( 2 ) = ENRMER / ( DBLE( N )*ULP )
|
||
|
*
|
||
|
RETURN
|
||
|
*
|
||
|
* End of ZGET52
|
||
|
*
|
||
|
END
|