You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
208 lines
5.1 KiB
208 lines
5.1 KiB
2 years ago
|
*> \brief \b ZLSETS
|
||
|
*
|
||
|
* =========== DOCUMENTATION ===========
|
||
|
*
|
||
|
* Online html documentation available at
|
||
|
* http://www.netlib.org/lapack/explore-html/
|
||
|
*
|
||
|
* Definition:
|
||
|
* ===========
|
||
|
*
|
||
|
* SUBROUTINE ZLSETS( M, P, N, A, AF, LDA, B, BF, LDB, C, CF, D, DF,
|
||
|
* X, WORK, LWORK, RWORK, RESULT )
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
* INTEGER LDA, LDB, LWORK, M, N, P
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
*
|
||
|
*
|
||
|
*> \par Purpose:
|
||
|
* =============
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*> ZLSETS tests ZGGLSE - a subroutine for solving linear equality
|
||
|
*> constrained least square problem (LSE).
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Arguments:
|
||
|
* ==========
|
||
|
*
|
||
|
*> \param[in] M
|
||
|
*> \verbatim
|
||
|
*> M is INTEGER
|
||
|
*> The number of rows of the matrix A. M >= 0.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] P
|
||
|
*> \verbatim
|
||
|
*> P is INTEGER
|
||
|
*> The number of rows of the matrix B. P >= 0.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] N
|
||
|
*> \verbatim
|
||
|
*> N is INTEGER
|
||
|
*> The number of columns of the matrices A and B. N >= 0.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] A
|
||
|
*> \verbatim
|
||
|
*> A is COMPLEX*16 array, dimension (LDA,N)
|
||
|
*> The M-by-N matrix A.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] AF
|
||
|
*> \verbatim
|
||
|
*> AF is COMPLEX*16 array, dimension (LDA,N)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDA
|
||
|
*> \verbatim
|
||
|
*> LDA is INTEGER
|
||
|
*> The leading dimension of the arrays A, AF, Q and R.
|
||
|
*> LDA >= max(M,N).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] B
|
||
|
*> \verbatim
|
||
|
*> B is COMPLEX*16 array, dimension (LDB,N)
|
||
|
*> The P-by-N matrix A.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] BF
|
||
|
*> \verbatim
|
||
|
*> BF is COMPLEX*16 array, dimension (LDB,N)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDB
|
||
|
*> \verbatim
|
||
|
*> LDB is INTEGER
|
||
|
*> The leading dimension of the arrays B, BF, V and S.
|
||
|
*> LDB >= max(P,N).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] C
|
||
|
*> \verbatim
|
||
|
*> C is COMPLEX*16 array, dimension( M )
|
||
|
*> the vector C in the LSE problem.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] CF
|
||
|
*> \verbatim
|
||
|
*> CF is COMPLEX*16 array, dimension( M )
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] D
|
||
|
*> \verbatim
|
||
|
*> D is COMPLEX*16 array, dimension( P )
|
||
|
*> the vector D in the LSE problem.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] DF
|
||
|
*> \verbatim
|
||
|
*> DF is COMPLEX*16 array, dimension( P )
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] X
|
||
|
*> \verbatim
|
||
|
*> X is COMPLEX*16 array, dimension( N )
|
||
|
*> solution vector X in the LSE problem.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] WORK
|
||
|
*> \verbatim
|
||
|
*> WORK is COMPLEX*16 array, dimension (LWORK)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LWORK
|
||
|
*> \verbatim
|
||
|
*> LWORK is INTEGER
|
||
|
*> The dimension of the array WORK.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] RWORK
|
||
|
*> \verbatim
|
||
|
*> RWORK is DOUBLE PRECISION array, dimension (M)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] RESULT
|
||
|
*> \verbatim
|
||
|
*> RESULT is DOUBLE PRECISION array, dimension (2)
|
||
|
*> The test ratios:
|
||
|
*> RESULT(1) = norm( A*x - c )/ norm(A)*norm(X)*EPS
|
||
|
*> RESULT(2) = norm( B*x - d )/ norm(B)*norm(X)*EPS
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Authors:
|
||
|
* ========
|
||
|
*
|
||
|
*> \author Univ. of Tennessee
|
||
|
*> \author Univ. of California Berkeley
|
||
|
*> \author Univ. of Colorado Denver
|
||
|
*> \author NAG Ltd.
|
||
|
*
|
||
|
*> \ingroup complex16_eig
|
||
|
*
|
||
|
* =====================================================================
|
||
|
SUBROUTINE ZLSETS( M, P, N, A, AF, LDA, B, BF, LDB, C, CF, D, DF,
|
||
|
$ X, WORK, LWORK, RWORK, RESULT )
|
||
|
*
|
||
|
* -- LAPACK test routine --
|
||
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
INTEGER LDA, LDB, LWORK, M, N, P
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
*
|
||
|
* ====================================================================
|
||
|
*
|
||
|
DOUBLE PRECISION RESULT( 2 ), RWORK( * )
|
||
|
COMPLEX*16 A( LDA, * ), AF( LDA, * ), B( LDB, * ),
|
||
|
$ BF( LDB, * ), C( * ), CF( * ), D( * ), DF( * ),
|
||
|
$ WORK( LWORK ), X( * )
|
||
|
* ..
|
||
|
* .. Local Scalars ..
|
||
|
INTEGER INFO
|
||
|
* ..
|
||
|
* .. External Subroutines ..
|
||
|
EXTERNAL ZCOPY, ZGET02, ZGGLSE, ZLACPY
|
||
|
* ..
|
||
|
* .. Executable Statements ..
|
||
|
*
|
||
|
* Copy the matrices A and B to the arrays AF and BF,
|
||
|
* and the vectors C and D to the arrays CF and DF,
|
||
|
*
|
||
|
CALL ZLACPY( 'Full', M, N, A, LDA, AF, LDA )
|
||
|
CALL ZLACPY( 'Full', P, N, B, LDB, BF, LDB )
|
||
|
CALL ZCOPY( M, C, 1, CF, 1 )
|
||
|
CALL ZCOPY( P, D, 1, DF, 1 )
|
||
|
*
|
||
|
* Solve LSE problem
|
||
|
*
|
||
|
CALL ZGGLSE( M, N, P, AF, LDA, BF, LDB, CF, DF, X, WORK, LWORK,
|
||
|
$ INFO )
|
||
|
*
|
||
|
* Test the residual for the solution of LSE
|
||
|
*
|
||
|
* Compute RESULT(1) = norm( A*x - c ) / norm(A)*norm(X)*EPS
|
||
|
*
|
||
|
CALL ZCOPY( M, C, 1, CF, 1 )
|
||
|
CALL ZCOPY( P, D, 1, DF, 1 )
|
||
|
CALL ZGET02( 'No transpose', M, N, 1, A, LDA, X, N, CF, M, RWORK,
|
||
|
$ RESULT( 1 ) )
|
||
|
*
|
||
|
* Compute result(2) = norm( B*x - d ) / norm(B)*norm(X)*EPS
|
||
|
*
|
||
|
CALL ZGET02( 'No transpose', P, N, 1, B, LDB, X, N, DF, P, RWORK,
|
||
|
$ RESULT( 2 ) )
|
||
|
*
|
||
|
RETURN
|
||
|
*
|
||
|
* End of ZLSETS
|
||
|
*
|
||
|
END
|