Cloned library LAPACK-3.11.0 with extra build files for internal package management.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

438 lines
13 KiB

2 years ago
*> \brief \b CCHKLQ
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE CCHKLQ( DOTYPE, NM, MVAL, NN, NVAL, NNB, NBVAL, NXVAL,
* NRHS, THRESH, TSTERR, NMAX, A, AF, AQ, AL, AC,
* B, X, XACT, TAU, WORK, RWORK, NOUT )
*
* .. Scalar Arguments ..
* LOGICAL TSTERR
* INTEGER NM, NMAX, NN, NNB, NOUT, NRHS
* REAL THRESH
* ..
* .. Array Arguments ..
* LOGICAL DOTYPE( * )
* INTEGER MVAL( * ), NBVAL( * ), NVAL( * ),
* $ NXVAL( * )
* REAL RWORK( * )
* COMPLEX A( * ), AC( * ), AF( * ), AL( * ), AQ( * ),
* $ B( * ), TAU( * ), WORK( * ), X( * ), XACT( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> CCHKLQ tests CGELQF, CUNGLQ and CUNMLQ.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] DOTYPE
*> \verbatim
*> DOTYPE is LOGICAL array, dimension (NTYPES)
*> The matrix types to be used for testing. Matrices of type j
*> (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
*> .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
*> \endverbatim
*>
*> \param[in] NM
*> \verbatim
*> NM is INTEGER
*> The number of values of M contained in the vector MVAL.
*> \endverbatim
*>
*> \param[in] MVAL
*> \verbatim
*> MVAL is INTEGER array, dimension (NM)
*> The values of the matrix row dimension M.
*> \endverbatim
*>
*> \param[in] NN
*> \verbatim
*> NN is INTEGER
*> The number of values of N contained in the vector NVAL.
*> \endverbatim
*>
*> \param[in] NVAL
*> \verbatim
*> NVAL is INTEGER array, dimension (NN)
*> The values of the matrix column dimension N.
*> \endverbatim
*>
*> \param[in] NNB
*> \verbatim
*> NNB is INTEGER
*> The number of values of NB and NX contained in the
*> vectors NBVAL and NXVAL. The blocking parameters are used
*> in pairs (NB,NX).
*> \endverbatim
*>
*> \param[in] NBVAL
*> \verbatim
*> NBVAL is INTEGER array, dimension (NNB)
*> The values of the blocksize NB.
*> \endverbatim
*>
*> \param[in] NXVAL
*> \verbatim
*> NXVAL is INTEGER array, dimension (NNB)
*> The values of the crossover point NX.
*> \endverbatim
*>
*> \param[in] NRHS
*> \verbatim
*> NRHS is INTEGER
*> The number of right hand side vectors to be generated for
*> each linear system.
*> \endverbatim
*>
*> \param[in] THRESH
*> \verbatim
*> THRESH is REAL
*> The threshold value for the test ratios. A result is
*> included in the output file if RESULT >= THRESH. To have
*> every test ratio printed, use THRESH = 0.
*> \endverbatim
*>
*> \param[in] TSTERR
*> \verbatim
*> TSTERR is LOGICAL
*> Flag that indicates whether error exits are to be tested.
*> \endverbatim
*>
*> \param[in] NMAX
*> \verbatim
*> NMAX is INTEGER
*> The maximum value permitted for M or N, used in dimensioning
*> the work arrays.
*> \endverbatim
*>
*> \param[out] A
*> \verbatim
*> A is COMPLEX array, dimension (NMAX*NMAX)
*> \endverbatim
*>
*> \param[out] AF
*> \verbatim
*> AF is COMPLEX array, dimension (NMAX*NMAX)
*> \endverbatim
*>
*> \param[out] AQ
*> \verbatim
*> AQ is COMPLEX array, dimension (NMAX*NMAX)
*> \endverbatim
*>
*> \param[out] AL
*> \verbatim
*> AL is COMPLEX array, dimension (NMAX*NMAX)
*> \endverbatim
*>
*> \param[out] AC
*> \verbatim
*> AC is COMPLEX array, dimension (NMAX*NMAX)
*> \endverbatim
*>
*> \param[out] B
*> \verbatim
*> B is COMPLEX array, dimension (NMAX*NRHS)
*> \endverbatim
*>
*> \param[out] X
*> \verbatim
*> X is COMPLEX array, dimension (NMAX*NRHS)
*> \endverbatim
*>
*> \param[out] XACT
*> \verbatim
*> XACT is COMPLEX array, dimension (NMAX*NRHS)
*> \endverbatim
*>
*> \param[out] TAU
*> \verbatim
*> TAU is COMPLEX array, dimension (NMAX)
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is COMPLEX array, dimension (NMAX*NMAX)
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*> RWORK is REAL array, dimension (NMAX)
*> \endverbatim
*>
*> \param[in] NOUT
*> \verbatim
*> NOUT is INTEGER
*> The unit number for output.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup complex_lin
*
* =====================================================================
SUBROUTINE CCHKLQ( DOTYPE, NM, MVAL, NN, NVAL, NNB, NBVAL, NXVAL,
$ NRHS, THRESH, TSTERR, NMAX, A, AF, AQ, AL, AC,
$ B, X, XACT, TAU, WORK, RWORK, NOUT )
*
* -- LAPACK test routine --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
LOGICAL TSTERR
INTEGER NM, NMAX, NN, NNB, NOUT, NRHS
REAL THRESH
* ..
* .. Array Arguments ..
LOGICAL DOTYPE( * )
INTEGER MVAL( * ), NBVAL( * ), NVAL( * ),
$ NXVAL( * )
REAL RWORK( * )
COMPLEX A( * ), AC( * ), AF( * ), AL( * ), AQ( * ),
$ B( * ), TAU( * ), WORK( * ), X( * ), XACT( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
INTEGER NTESTS
PARAMETER ( NTESTS = 7 )
INTEGER NTYPES
PARAMETER ( NTYPES = 8 )
REAL ZERO
PARAMETER ( ZERO = 0.0E0 )
* ..
* .. Local Scalars ..
CHARACTER DIST, TYPE
CHARACTER*3 PATH
INTEGER I, IK, IM, IMAT, IN, INB, INFO, K, KL, KU, LDA,
$ LWORK, M, MINMN, MODE, N, NB, NERRS, NFAIL, NK,
$ NRUN, NT, NX
REAL ANORM, CNDNUM
* ..
* .. Local Arrays ..
INTEGER ISEED( 4 ), ISEEDY( 4 ), KVAL( 4 )
REAL RESULT( NTESTS )
* ..
* .. External Subroutines ..
EXTERNAL ALAERH, ALAHD, ALASUM, CERRLQ, CGELQS, CGET02,
$ CLACPY, CLARHS, CLATB4, CLATMS, CLQT01, CLQT02,
$ CLQT03, XLAENV
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX, MIN
* ..
* .. Scalars in Common ..
LOGICAL LERR, OK
CHARACTER*32 SRNAMT
INTEGER INFOT, NUNIT
* ..
* .. Common blocks ..
COMMON / INFOC / INFOT, NUNIT, OK, LERR
COMMON / SRNAMC / SRNAMT
* ..
* .. Data statements ..
DATA ISEEDY / 1988, 1989, 1990, 1991 /
* ..
* .. Executable Statements ..
*
* Initialize constants and the random number seed.
*
PATH( 1: 1 ) = 'Complex precision'
PATH( 2: 3 ) = 'LQ'
NRUN = 0
NFAIL = 0
NERRS = 0
DO 10 I = 1, 4
ISEED( I ) = ISEEDY( I )
10 CONTINUE
*
* Test the error exits
*
IF( TSTERR )
$ CALL CERRLQ( PATH, NOUT )
INFOT = 0
CALL XLAENV( 2, 2 )
*
LDA = NMAX
LWORK = NMAX*MAX( NMAX, NRHS )
*
* Do for each value of M in MVAL.
*
DO 70 IM = 1, NM
M = MVAL( IM )
*
* Do for each value of N in NVAL.
*
DO 60 IN = 1, NN
N = NVAL( IN )
MINMN = MIN( M, N )
DO 50 IMAT = 1, NTYPES
*
* Do the tests only if DOTYPE( IMAT ) is true.
*
IF( .NOT.DOTYPE( IMAT ) )
$ GO TO 50
*
* Set up parameters with CLATB4 and generate a test matrix
* with CLATMS.
*
CALL CLATB4( PATH, IMAT, M, N, TYPE, KL, KU, ANORM, MODE,
$ CNDNUM, DIST )
*
SRNAMT = 'CLATMS'
CALL CLATMS( M, N, DIST, ISEED, TYPE, RWORK, MODE,
$ CNDNUM, ANORM, KL, KU, 'No packing', A, LDA,
$ WORK, INFO )
*
* Check error code from CLATMS.
*
IF( INFO.NE.0 ) THEN
CALL ALAERH( PATH, 'CLATMS', INFO, 0, ' ', M, N, -1,
$ -1, -1, IMAT, NFAIL, NERRS, NOUT )
GO TO 50
END IF
*
* Set some values for K: the first value must be MINMN,
* corresponding to the call of CLQT01; other values are
* used in the calls of CLQT02, and must not exceed MINMN.
*
KVAL( 1 ) = MINMN
KVAL( 2 ) = 0
KVAL( 3 ) = 1
KVAL( 4 ) = MINMN / 2
IF( MINMN.EQ.0 ) THEN
NK = 1
ELSE IF( MINMN.EQ.1 ) THEN
NK = 2
ELSE IF( MINMN.LE.3 ) THEN
NK = 3
ELSE
NK = 4
END IF
*
* Do for each value of K in KVAL
*
DO 40 IK = 1, NK
K = KVAL( IK )
*
* Do for each pair of values (NB,NX) in NBVAL and NXVAL.
*
DO 30 INB = 1, NNB
NB = NBVAL( INB )
CALL XLAENV( 1, NB )
NX = NXVAL( INB )
CALL XLAENV( 3, NX )
DO I = 1, NTESTS
RESULT( I ) = ZERO
END DO
NT = 2
IF( IK.EQ.1 ) THEN
*
* Test CGELQF
*
CALL CLQT01( M, N, A, AF, AQ, AL, LDA, TAU,
$ WORK, LWORK, RWORK, RESULT( 1 ) )
ELSE IF( M.LE.N ) THEN
*
* Test CUNGLQ, using factorization
* returned by CLQT01
*
CALL CLQT02( M, N, K, A, AF, AQ, AL, LDA, TAU,
$ WORK, LWORK, RWORK, RESULT( 1 ) )
END IF
IF( M.GE.K ) THEN
*
* Test CUNMLQ, using factorization returned
* by CLQT01
*
CALL CLQT03( M, N, K, AF, AC, AL, AQ, LDA, TAU,
$ WORK, LWORK, RWORK, RESULT( 3 ) )
NT = NT + 4
*
* If M>=N and K=N, call CGELQS to solve a system
* with NRHS right hand sides and compute the
* residual.
*
IF( K.EQ.M .AND. INB.EQ.1 ) THEN
*
* Generate a solution and set the right
* hand side.
*
SRNAMT = 'CLARHS'
CALL CLARHS( PATH, 'New', 'Full',
$ 'No transpose', M, N, 0, 0,
$ NRHS, A, LDA, XACT, LDA, B, LDA,
$ ISEED, INFO )
*
CALL CLACPY( 'Full', M, NRHS, B, LDA, X,
$ LDA )
SRNAMT = 'CGELQS'
CALL CGELQS( M, N, NRHS, AF, LDA, TAU, X,
$ LDA, WORK, LWORK, INFO )
*
* Check error code from CGELQS.
*
IF( INFO.NE.0 )
$ CALL ALAERH( PATH, 'CGELQS', INFO, 0, ' ',
$ M, N, NRHS, -1, NB, IMAT,
$ NFAIL, NERRS, NOUT )
*
CALL CGET02( 'No transpose', M, N, NRHS, A,
$ LDA, X, LDA, B, LDA, RWORK,
$ RESULT( 7 ) )
NT = NT + 1
END IF
END IF
*
* Print information about the tests that did not
* pass the threshold.
*
DO 20 I = 1, NT
IF( RESULT( I ).GE.THRESH ) THEN
IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
$ CALL ALAHD( NOUT, PATH )
WRITE( NOUT, FMT = 9999 )M, N, K, NB, NX,
$ IMAT, I, RESULT( I )
NFAIL = NFAIL + 1
END IF
20 CONTINUE
NRUN = NRUN + NT
30 CONTINUE
40 CONTINUE
50 CONTINUE
60 CONTINUE
70 CONTINUE
*
* Print a summary of the results.
*
CALL ALASUM( PATH, NOUT, NFAIL, NRUN, NERRS )
*
9999 FORMAT( ' M=', I5, ', N=', I5, ', K=', I5, ', NB=', I4, ', NX=',
$ I5, ', type ', I2, ', test(', I2, ')=', G12.5 )
RETURN
*
* End of CCHKLQ
*
END