Cloned library LAPACK-3.11.0 with extra build files for internal package management.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

484 lines
15 KiB

2 years ago
*> \brief \b CDRVHE_AA
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE CDRVHE_AA( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, NMAX,
* A, AFAC, AINV, B, X, XACT, WORK, RWORK, IWORK,
* NOUT )
*
* .. Scalar Arguments ..
* LOGICAL TSTERR
* INTEGER NMAX, NN, NOUT, NRHS
* REAL THRESH
* ..
* .. Array Arguments ..
* LOGICAL DOTYPE( * )
* INTEGER IWORK( * ), NVAL( * )
* REAL RWORK( * )
* COMPLEX A( * ), AFAC( * ), AINV( * ), B( * ),
* $ WORK( * ), X( * ), XACT( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> CDRVHE_AA tests the driver routine CHESV_AA.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] DOTYPE
*> \verbatim
*> DOTYPE is LOGICAL array, dimension (NTYPES)
*> The matrix types to be used for testing. Matrices of type j
*> (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
*> .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
*> \endverbatim
*>
*> \param[in] NN
*> \verbatim
*> NN is INTEGER
*> The number of values of N contained in the vector NVAL.
*> \endverbatim
*>
*> \param[in] NVAL
*> \verbatim
*> NVAL is INTEGER array, dimension (NN)
*> The values of the matrix dimension N.
*> \endverbatim
*>
*> \param[in] NRHS
*> \verbatim
*> NRHS is INTEGER
*> The number of right hand side vectors to be generated for
*> each linear system.
*> \endverbatim
*>
*> \param[in] THRESH
*> \verbatim
*> THRESH is REAL
*> The threshold value for the test ratios. A result is
*> included in the output file if RESULT >= THRESH. To have
*> every test ratio printed, use THRESH = 0.
*> \endverbatim
*>
*> \param[in] TSTERR
*> \verbatim
*> TSTERR is LOGICAL
*> Flag that indicates whether error exits are to be tested.
*> \endverbatim
*>
*> \param[in] NMAX
*> \verbatim
*> NMAX is INTEGER
*> The maximum value permitted for N, used in dimensioning the
*> work arrays.
*> \endverbatim
*>
*> \param[out] A
*> \verbatim
*> A is COMPLEX array, dimension (NMAX*NMAX)
*> \endverbatim
*>
*> \param[out] AFAC
*> \verbatim
*> AFAC is COMPLEX array, dimension (NMAX*NMAX)
*> \endverbatim
*>
*> \param[out] AINV
*> \verbatim
*> AINV is COMPLEX array, dimension (NMAX*NMAX)
*> \endverbatim
*>
*> \param[out] B
*> \verbatim
*> B is COMPLEX array, dimension (NMAX*NRHS)
*> \endverbatim
*>
*> \param[out] X
*> \verbatim
*> X is COMPLEX array, dimension (NMAX*NRHS)
*> \endverbatim
*>
*> \param[out] XACT
*> \verbatim
*> XACT is COMPLEX array, dimension (NMAX*NRHS)
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is COMPLEX array, dimension (NMAX*max(2,NRHS))
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*> RWORK is REAL array, dimension (NMAX+2*NRHS)
*> \endverbatim
*>
*> \param[out] IWORK
*> \verbatim
*> IWORK is INTEGER array, dimension (NMAX)
*> \endverbatim
*>
*> \param[in] NOUT
*> \verbatim
*> NOUT is INTEGER
*> The unit number for output.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup complex_lin
*
* =====================================================================
SUBROUTINE CDRVHE_AA( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR,
$ NMAX, A, AFAC, AINV, B, X, XACT, WORK,
$ RWORK, IWORK, NOUT )
*
* -- LAPACK test routine --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
LOGICAL TSTERR
INTEGER NMAX, NN, NOUT, NRHS
REAL THRESH
* ..
* .. Array Arguments ..
LOGICAL DOTYPE( * )
INTEGER IWORK( * ), NVAL( * )
REAL RWORK( * )
COMPLEX A( * ), AFAC( * ), AINV( * ), B( * ),
$ WORK( * ), X( * ), XACT( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
REAL ONE, ZERO
PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
INTEGER NTYPES, NTESTS
PARAMETER ( NTYPES = 10, NTESTS = 3 )
INTEGER NFACT
PARAMETER ( NFACT = 2 )
* ..
* .. Local Scalars ..
LOGICAL ZEROT
CHARACTER DIST, FACT, TYPE, UPLO, XTYPE
CHARACTER*3 MATPATH, PATH
INTEGER I, I1, I2, IFACT, IMAT, IN, INFO, IOFF, IUPLO,
$ IZERO, J, K, KL, KU, LDA, LWORK, MODE, N,
$ NB, NBMIN, NERRS, NFAIL, NIMAT, NRUN, NT
REAL ANORM, CNDNUM
* ..
* .. Local Arrays ..
CHARACTER FACTS( NFACT ), UPLOS( 2 )
INTEGER ISEED( 4 ), ISEEDY( 4 )
REAL RESULT( NTESTS )
* ..
* .. External Functions ..
REAL CLANHE, SGET06
EXTERNAL CLANHE, SGET06
* ..
* .. External Subroutines ..
EXTERNAL ALADHD, ALAERH, ALASVM, XLAENV, CERRVX,
$ CGET04, CLACPY, CLARHS, CLATB4, CLATMS,
$ CHESV_AA, CHET01_AA, CPOT02,
$ CHETRF_AA
* ..
* .. Scalars in Common ..
LOGICAL LERR, OK
CHARACTER*32 SRNAMT
INTEGER INFOT, NUNIT
* ..
* .. Common blocks ..
COMMON / INFOC / INFOT, NUNIT, OK, LERR
COMMON / SRNAMC / SRNAMT
* ..
* .. Intrinsic Functions ..
INTRINSIC CMPLX, MAX, MIN
* ..
* .. Data statements ..
DATA ISEEDY / 1988, 1989, 1990, 1991 /
DATA UPLOS / 'U', 'L' / , FACTS / 'F', 'N' /
* ..
* .. Executable Statements ..
*
* Initialize constants and the random number seed.
*
* Test path
*
PATH( 1: 1 ) = 'Complex precision'
PATH( 2: 3 ) = 'HA'
*
* Path to generate matrices
*
MATPATH( 1: 1 ) = 'Complex precision'
MATPATH( 2: 3 ) = 'HE'
*
NRUN = 0
NFAIL = 0
NERRS = 0
DO 10 I = 1, 4
ISEED( I ) = ISEEDY( I )
10 CONTINUE
*
* Test the error exits
*
IF( TSTERR )
$ CALL CERRVX( PATH, NOUT )
INFOT = 0
*
* Set the block size and minimum block size for testing.
*
NB = 1
NBMIN = 2
CALL XLAENV( 1, NB )
CALL XLAENV( 2, NBMIN )
*
* Do for each value of N in NVAL
*
DO 180 IN = 1, NN
N = NVAL( IN )
LWORK = MAX( 3*N-2, N*(1+NB) )
LWORK = MAX( LWORK, 1 )
LDA = MAX( N, 1 )
XTYPE = 'N'
NIMAT = NTYPES
IF( N.LE.0 )
$ NIMAT = 1
*
DO 170 IMAT = 1, NIMAT
*
* Do the tests only if DOTYPE( IMAT ) is true.
*
IF( .NOT.DOTYPE( IMAT ) )
$ GO TO 170
*
* Skip types 3, 4, 5, or 6 if the matrix size is too small.
*
ZEROT = IMAT.GE.3 .AND. IMAT.LE.6
IF( ZEROT .AND. N.LT.IMAT-2 )
$ GO TO 170
*
* Do first for UPLO = 'U', then for UPLO = 'L'
*
DO 160 IUPLO = 1, 2
UPLO = UPLOS( IUPLO )
*
* Begin generate the test matrix A.
*
* Set up parameters with CLATB4 for the matrix generator
* based on the type of matrix to be generated.
*
CALL CLATB4( MATPATH, IMAT, N, N, TYPE, KL, KU, ANORM,
$ MODE, CNDNUM, DIST )
*
* Generate a matrix with CLATMS.
*
SRNAMT = 'CLATMS'
CALL CLATMS( N, N, DIST, ISEED, TYPE, RWORK, MODE,
$ CNDNUM, ANORM, KL, KU, UPLO, A, LDA,
$ WORK, INFO )
*
* Check error code from CLATMS and handle error.
*
IF( INFO.NE.0 ) THEN
CALL ALAERH( PATH, 'CLATMS', INFO, 0, UPLO, N, N,
$ -1, -1, -1, IMAT, NFAIL, NERRS, NOUT )
GO TO 160
END IF
*
* For types 3-6, zero one or more rows and columns of
* the matrix to test that INFO is returned correctly.
*
IF( ZEROT ) THEN
IF( IMAT.EQ.3 ) THEN
IZERO = 1
ELSE IF( IMAT.EQ.4 ) THEN
IZERO = N
ELSE
IZERO = N / 2 + 1
END IF
*
IF( IMAT.LT.6 ) THEN
*
* Set row and column IZERO to zero.
*
IF( IUPLO.EQ.1 ) THEN
IOFF = ( IZERO-1 )*LDA
DO 20 I = 1, IZERO - 1
A( IOFF+I ) = ZERO
20 CONTINUE
IOFF = IOFF + IZERO
DO 30 I = IZERO, N
A( IOFF ) = ZERO
IOFF = IOFF + LDA
30 CONTINUE
ELSE
IOFF = IZERO
DO 40 I = 1, IZERO - 1
A( IOFF ) = ZERO
IOFF = IOFF + LDA
40 CONTINUE
IOFF = IOFF - IZERO
DO 50 I = IZERO, N
A( IOFF+I ) = ZERO
50 CONTINUE
END IF
ELSE
IOFF = 0
IF( IUPLO.EQ.1 ) THEN
*
* Set the first IZERO rows and columns to zero.
*
DO 70 J = 1, N
I2 = MIN( J, IZERO )
DO 60 I = 1, I2
A( IOFF+I ) = ZERO
60 CONTINUE
IOFF = IOFF + LDA
70 CONTINUE
IZERO = 1
ELSE
*
* Set the first IZERO rows and columns to zero.
*
IOFF = 0
DO 90 J = 1, N
I1 = MAX( J, IZERO )
DO 80 I = I1, N
A( IOFF+I ) = ZERO
80 CONTINUE
IOFF = IOFF + LDA
90 CONTINUE
END IF
END IF
ELSE
IZERO = 0
END IF
*
* End generate the test matrix A.
*
*
DO 150 IFACT = 1, NFACT
*
* Do first for FACT = 'F', then for other values.
*
FACT = FACTS( IFACT )
*
* Form an exact solution and set the right hand side.
*
SRNAMT = 'CLARHS'
CALL CLARHS( MATPATH, XTYPE, UPLO, ' ', N, N, KL, KU,
$ NRHS, A, LDA, XACT, LDA, B, LDA, ISEED,
$ INFO )
XTYPE = 'C'
*
* --- Test CHESV_AA ---
*
IF( IFACT.EQ.2 ) THEN
CALL CLACPY( UPLO, N, N, A, LDA, AFAC, LDA )
CALL CLACPY( 'Full', N, NRHS, B, LDA, X, LDA )
*
* Factor the matrix and solve the system using CHESV_AA.
*
SRNAMT = 'CHESV_AA '
CALL CHESV_AA( UPLO, N, NRHS, AFAC, LDA, IWORK,
$ X, LDA, WORK, LWORK, INFO )
*
* Adjust the expected value of INFO to account for
* pivoting.
*
IF( IZERO.GT.0 ) THEN
J = 1
K = IZERO
100 CONTINUE
IF( J.EQ.K ) THEN
K = IWORK( J )
ELSE IF( IWORK( J ).EQ.K ) THEN
K = J
END IF
IF( J.LT.K ) THEN
J = J + 1
GO TO 100
END IF
ELSE
K = 0
END IF
*
* Check error code from CHESV_AA .
*
IF( INFO.NE.K ) THEN
CALL ALAERH( PATH, 'CHESV_AA', INFO, K,
$ UPLO, N, N, -1, -1, NRHS,
$ IMAT, NFAIL, NERRS, NOUT )
GO TO 120
ELSE IF( INFO.NE.0 ) THEN
GO TO 120
END IF
*
* Reconstruct matrix from factors and compute
* residual.
*
CALL CHET01_AA( UPLO, N, A, LDA, AFAC, LDA,
$ IWORK, AINV, LDA, RWORK,
$ RESULT( 1 ) )
*
* Compute residual of the computed solution.
*
CALL CLACPY( 'Full', N, NRHS, B, LDA, WORK, LDA )
CALL CPOT02( UPLO, N, NRHS, A, LDA, X, LDA, WORK,
$ LDA, RWORK, RESULT( 2 ) )
NT = 2
*
* Print information about the tests that did not pass
* the threshold.
*
DO 110 K = 1, NT
IF( RESULT( K ).GE.THRESH ) THEN
IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
$ CALL ALADHD( NOUT, PATH )
WRITE( NOUT, FMT = 9999 )'CHESV_AA ',
$ UPLO, N, IMAT, K, RESULT( K )
NFAIL = NFAIL + 1
END IF
110 CONTINUE
NRUN = NRUN + NT
120 CONTINUE
END IF
*
150 CONTINUE
*
160 CONTINUE
170 CONTINUE
180 CONTINUE
*
* Print a summary of the results.
*
CALL ALASVM( PATH, NOUT, NFAIL, NRUN, NERRS )
*
9999 FORMAT( 1X, A, ', UPLO=''', A1, ''', N =', I5, ', type ', I2,
$ ', test ', I2, ', ratio =', G12.5 )
RETURN
*
* End of CDRVHE_AA
*
END