You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
579 lines
18 KiB
579 lines
18 KiB
2 years ago
|
*> \brief \b CDRVPT
|
||
|
*
|
||
|
* =========== DOCUMENTATION ===========
|
||
|
*
|
||
|
* Online html documentation available at
|
||
|
* http://www.netlib.org/lapack/explore-html/
|
||
|
*
|
||
|
* Definition:
|
||
|
* ===========
|
||
|
*
|
||
|
* SUBROUTINE CDRVPT( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, A, D,
|
||
|
* E, B, X, XACT, WORK, RWORK, NOUT )
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
* LOGICAL TSTERR
|
||
|
* INTEGER NN, NOUT, NRHS
|
||
|
* REAL THRESH
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
* LOGICAL DOTYPE( * )
|
||
|
* INTEGER NVAL( * )
|
||
|
* REAL D( * ), RWORK( * )
|
||
|
* COMPLEX A( * ), B( * ), E( * ), WORK( * ), X( * ),
|
||
|
* $ XACT( * )
|
||
|
* ..
|
||
|
*
|
||
|
*
|
||
|
*> \par Purpose:
|
||
|
* =============
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*> CDRVPT tests CPTSV and -SVX.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Arguments:
|
||
|
* ==========
|
||
|
*
|
||
|
*> \param[in] DOTYPE
|
||
|
*> \verbatim
|
||
|
*> DOTYPE is LOGICAL array, dimension (NTYPES)
|
||
|
*> The matrix types to be used for testing. Matrices of type j
|
||
|
*> (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
|
||
|
*> .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] NN
|
||
|
*> \verbatim
|
||
|
*> NN is INTEGER
|
||
|
*> The number of values of N contained in the vector NVAL.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] NVAL
|
||
|
*> \verbatim
|
||
|
*> NVAL is INTEGER array, dimension (NN)
|
||
|
*> The values of the matrix dimension N.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] NRHS
|
||
|
*> \verbatim
|
||
|
*> NRHS is INTEGER
|
||
|
*> The number of right hand side vectors to be generated for
|
||
|
*> each linear system.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] THRESH
|
||
|
*> \verbatim
|
||
|
*> THRESH is REAL
|
||
|
*> The threshold value for the test ratios. A result is
|
||
|
*> included in the output file if RESULT >= THRESH. To have
|
||
|
*> every test ratio printed, use THRESH = 0.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] TSTERR
|
||
|
*> \verbatim
|
||
|
*> TSTERR is LOGICAL
|
||
|
*> Flag that indicates whether error exits are to be tested.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] A
|
||
|
*> \verbatim
|
||
|
*> A is COMPLEX array, dimension (NMAX*2)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] D
|
||
|
*> \verbatim
|
||
|
*> D is REAL array, dimension (NMAX*2)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] E
|
||
|
*> \verbatim
|
||
|
*> E is COMPLEX array, dimension (NMAX*2)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] B
|
||
|
*> \verbatim
|
||
|
*> B is COMPLEX array, dimension (NMAX*NRHS)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] X
|
||
|
*> \verbatim
|
||
|
*> X is COMPLEX array, dimension (NMAX*NRHS)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] XACT
|
||
|
*> \verbatim
|
||
|
*> XACT is COMPLEX array, dimension (NMAX*NRHS)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] WORK
|
||
|
*> \verbatim
|
||
|
*> WORK is COMPLEX array, dimension
|
||
|
*> (NMAX*max(3,NRHS))
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] RWORK
|
||
|
*> \verbatim
|
||
|
*> RWORK is REAL array, dimension (NMAX+2*NRHS)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] NOUT
|
||
|
*> \verbatim
|
||
|
*> NOUT is INTEGER
|
||
|
*> The unit number for output.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Authors:
|
||
|
* ========
|
||
|
*
|
||
|
*> \author Univ. of Tennessee
|
||
|
*> \author Univ. of California Berkeley
|
||
|
*> \author Univ. of Colorado Denver
|
||
|
*> \author NAG Ltd.
|
||
|
*
|
||
|
*> \ingroup complex_lin
|
||
|
*
|
||
|
* =====================================================================
|
||
|
SUBROUTINE CDRVPT( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, A, D,
|
||
|
$ E, B, X, XACT, WORK, RWORK, NOUT )
|
||
|
*
|
||
|
* -- LAPACK test routine --
|
||
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
LOGICAL TSTERR
|
||
|
INTEGER NN, NOUT, NRHS
|
||
|
REAL THRESH
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
LOGICAL DOTYPE( * )
|
||
|
INTEGER NVAL( * )
|
||
|
REAL D( * ), RWORK( * )
|
||
|
COMPLEX A( * ), B( * ), E( * ), WORK( * ), X( * ),
|
||
|
$ XACT( * )
|
||
|
* ..
|
||
|
*
|
||
|
* =====================================================================
|
||
|
*
|
||
|
* .. Parameters ..
|
||
|
REAL ONE, ZERO
|
||
|
PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
|
||
|
INTEGER NTYPES
|
||
|
PARAMETER ( NTYPES = 12 )
|
||
|
INTEGER NTESTS
|
||
|
PARAMETER ( NTESTS = 6 )
|
||
|
* ..
|
||
|
* .. Local Scalars ..
|
||
|
LOGICAL ZEROT
|
||
|
CHARACTER DIST, FACT, TYPE
|
||
|
CHARACTER*3 PATH
|
||
|
INTEGER I, IA, IFACT, IMAT, IN, INFO, IX, IZERO, J, K,
|
||
|
$ K1, KL, KU, LDA, MODE, N, NERRS, NFAIL, NIMAT,
|
||
|
$ NRUN, NT
|
||
|
REAL AINVNM, ANORM, COND, DMAX, RCOND, RCONDC
|
||
|
* ..
|
||
|
* .. Local Arrays ..
|
||
|
INTEGER ISEED( 4 ), ISEEDY( 4 )
|
||
|
REAL RESULT( NTESTS ), Z( 3 )
|
||
|
* ..
|
||
|
* .. External Functions ..
|
||
|
INTEGER ISAMAX
|
||
|
REAL CLANHT, SCASUM, SGET06
|
||
|
EXTERNAL ISAMAX, CLANHT, SCASUM, SGET06
|
||
|
* ..
|
||
|
* .. External Subroutines ..
|
||
|
EXTERNAL ALADHD, ALAERH, ALASVM, CCOPY, CERRVX, CGET04,
|
||
|
$ CLACPY, CLAPTM, CLARNV, CLASET, CLATB4, CLATMS,
|
||
|
$ CPTSV, CPTSVX, CPTT01, CPTT02, CPTT05, CPTTRF,
|
||
|
$ CPTTRS, CSSCAL, SCOPY, SLARNV, SSCAL
|
||
|
* ..
|
||
|
* .. Intrinsic Functions ..
|
||
|
INTRINSIC ABS, CMPLX, MAX
|
||
|
* ..
|
||
|
* .. Scalars in Common ..
|
||
|
LOGICAL LERR, OK
|
||
|
CHARACTER*32 SRNAMT
|
||
|
INTEGER INFOT, NUNIT
|
||
|
* ..
|
||
|
* .. Common blocks ..
|
||
|
COMMON / INFOC / INFOT, NUNIT, OK, LERR
|
||
|
COMMON / SRNAMC / SRNAMT
|
||
|
* ..
|
||
|
* .. Data statements ..
|
||
|
DATA ISEEDY / 0, 0, 0, 1 /
|
||
|
* ..
|
||
|
* .. Executable Statements ..
|
||
|
*
|
||
|
PATH( 1: 1 ) = 'Complex precision'
|
||
|
PATH( 2: 3 ) = 'PT'
|
||
|
NRUN = 0
|
||
|
NFAIL = 0
|
||
|
NERRS = 0
|
||
|
DO 10 I = 1, 4
|
||
|
ISEED( I ) = ISEEDY( I )
|
||
|
10 CONTINUE
|
||
|
*
|
||
|
* Test the error exits
|
||
|
*
|
||
|
IF( TSTERR )
|
||
|
$ CALL CERRVX( PATH, NOUT )
|
||
|
INFOT = 0
|
||
|
*
|
||
|
DO 120 IN = 1, NN
|
||
|
*
|
||
|
* Do for each value of N in NVAL.
|
||
|
*
|
||
|
N = NVAL( IN )
|
||
|
LDA = MAX( 1, N )
|
||
|
NIMAT = NTYPES
|
||
|
IF( N.LE.0 )
|
||
|
$ NIMAT = 1
|
||
|
*
|
||
|
DO 110 IMAT = 1, NIMAT
|
||
|
*
|
||
|
* Do the tests only if DOTYPE( IMAT ) is true.
|
||
|
*
|
||
|
IF( N.GT.0 .AND. .NOT.DOTYPE( IMAT ) )
|
||
|
$ GO TO 110
|
||
|
*
|
||
|
* Set up parameters with CLATB4.
|
||
|
*
|
||
|
CALL CLATB4( PATH, IMAT, N, N, TYPE, KL, KU, ANORM, MODE,
|
||
|
$ COND, DIST )
|
||
|
*
|
||
|
ZEROT = IMAT.GE.8 .AND. IMAT.LE.10
|
||
|
IF( IMAT.LE.6 ) THEN
|
||
|
*
|
||
|
* Type 1-6: generate a symmetric tridiagonal matrix of
|
||
|
* known condition number in lower triangular band storage.
|
||
|
*
|
||
|
SRNAMT = 'CLATMS'
|
||
|
CALL CLATMS( N, N, DIST, ISEED, TYPE, RWORK, MODE, COND,
|
||
|
$ ANORM, KL, KU, 'B', A, 2, WORK, INFO )
|
||
|
*
|
||
|
* Check the error code from CLATMS.
|
||
|
*
|
||
|
IF( INFO.NE.0 ) THEN
|
||
|
CALL ALAERH( PATH, 'CLATMS', INFO, 0, ' ', N, N, KL,
|
||
|
$ KU, -1, IMAT, NFAIL, NERRS, NOUT )
|
||
|
GO TO 110
|
||
|
END IF
|
||
|
IZERO = 0
|
||
|
*
|
||
|
* Copy the matrix to D and E.
|
||
|
*
|
||
|
IA = 1
|
||
|
DO 20 I = 1, N - 1
|
||
|
D( I ) = REAL( A( IA ) )
|
||
|
E( I ) = A( IA+1 )
|
||
|
IA = IA + 2
|
||
|
20 CONTINUE
|
||
|
IF( N.GT.0 )
|
||
|
$ D( N ) = REAL( A( IA ) )
|
||
|
ELSE
|
||
|
*
|
||
|
* Type 7-12: generate a diagonally dominant matrix with
|
||
|
* unknown condition number in the vectors D and E.
|
||
|
*
|
||
|
IF( .NOT.ZEROT .OR. .NOT.DOTYPE( 7 ) ) THEN
|
||
|
*
|
||
|
* Let D and E have values from [-1,1].
|
||
|
*
|
||
|
CALL SLARNV( 2, ISEED, N, D )
|
||
|
CALL CLARNV( 2, ISEED, N-1, E )
|
||
|
*
|
||
|
* Make the tridiagonal matrix diagonally dominant.
|
||
|
*
|
||
|
IF( N.EQ.1 ) THEN
|
||
|
D( 1 ) = ABS( D( 1 ) )
|
||
|
ELSE
|
||
|
D( 1 ) = ABS( D( 1 ) ) + ABS( E( 1 ) )
|
||
|
D( N ) = ABS( D( N ) ) + ABS( E( N-1 ) )
|
||
|
DO 30 I = 2, N - 1
|
||
|
D( I ) = ABS( D( I ) ) + ABS( E( I ) ) +
|
||
|
$ ABS( E( I-1 ) )
|
||
|
30 CONTINUE
|
||
|
END IF
|
||
|
*
|
||
|
* Scale D and E so the maximum element is ANORM.
|
||
|
*
|
||
|
IX = ISAMAX( N, D, 1 )
|
||
|
DMAX = D( IX )
|
||
|
CALL SSCAL( N, ANORM / DMAX, D, 1 )
|
||
|
IF( N.GT.1 )
|
||
|
$ CALL CSSCAL( N-1, ANORM / DMAX, E, 1 )
|
||
|
*
|
||
|
ELSE IF( IZERO.GT.0 ) THEN
|
||
|
*
|
||
|
* Reuse the last matrix by copying back the zeroed out
|
||
|
* elements.
|
||
|
*
|
||
|
IF( IZERO.EQ.1 ) THEN
|
||
|
D( 1 ) = Z( 2 )
|
||
|
IF( N.GT.1 )
|
||
|
$ E( 1 ) = Z( 3 )
|
||
|
ELSE IF( IZERO.EQ.N ) THEN
|
||
|
E( N-1 ) = Z( 1 )
|
||
|
D( N ) = Z( 2 )
|
||
|
ELSE
|
||
|
E( IZERO-1 ) = Z( 1 )
|
||
|
D( IZERO ) = Z( 2 )
|
||
|
E( IZERO ) = Z( 3 )
|
||
|
END IF
|
||
|
END IF
|
||
|
*
|
||
|
* For types 8-10, set one row and column of the matrix to
|
||
|
* zero.
|
||
|
*
|
||
|
IZERO = 0
|
||
|
IF( IMAT.EQ.8 ) THEN
|
||
|
IZERO = 1
|
||
|
Z( 2 ) = D( 1 )
|
||
|
D( 1 ) = ZERO
|
||
|
IF( N.GT.1 ) THEN
|
||
|
Z( 3 ) = REAL( E( 1 ) )
|
||
|
E( 1 ) = ZERO
|
||
|
END IF
|
||
|
ELSE IF( IMAT.EQ.9 ) THEN
|
||
|
IZERO = N
|
||
|
IF( N.GT.1 ) THEN
|
||
|
Z( 1 ) = REAL( E( N-1 ) )
|
||
|
E( N-1 ) = ZERO
|
||
|
END IF
|
||
|
Z( 2 ) = D( N )
|
||
|
D( N ) = ZERO
|
||
|
ELSE IF( IMAT.EQ.10 ) THEN
|
||
|
IZERO = ( N+1 ) / 2
|
||
|
IF( IZERO.GT.1 ) THEN
|
||
|
Z( 1 ) = REAL( E( IZERO-1 ) )
|
||
|
E( IZERO-1 ) = ZERO
|
||
|
Z( 3 ) = REAL( E( IZERO ) )
|
||
|
E( IZERO ) = ZERO
|
||
|
END IF
|
||
|
Z( 2 ) = D( IZERO )
|
||
|
D( IZERO ) = ZERO
|
||
|
END IF
|
||
|
END IF
|
||
|
*
|
||
|
* Generate NRHS random solution vectors.
|
||
|
*
|
||
|
IX = 1
|
||
|
DO 40 J = 1, NRHS
|
||
|
CALL CLARNV( 2, ISEED, N, XACT( IX ) )
|
||
|
IX = IX + LDA
|
||
|
40 CONTINUE
|
||
|
*
|
||
|
* Set the right hand side.
|
||
|
*
|
||
|
CALL CLAPTM( 'Lower', N, NRHS, ONE, D, E, XACT, LDA, ZERO,
|
||
|
$ B, LDA )
|
||
|
*
|
||
|
DO 100 IFACT = 1, 2
|
||
|
IF( IFACT.EQ.1 ) THEN
|
||
|
FACT = 'F'
|
||
|
ELSE
|
||
|
FACT = 'N'
|
||
|
END IF
|
||
|
*
|
||
|
* Compute the condition number for comparison with
|
||
|
* the value returned by CPTSVX.
|
||
|
*
|
||
|
IF( ZEROT ) THEN
|
||
|
IF( IFACT.EQ.1 )
|
||
|
$ GO TO 100
|
||
|
RCONDC = ZERO
|
||
|
*
|
||
|
ELSE IF( IFACT.EQ.1 ) THEN
|
||
|
*
|
||
|
* Compute the 1-norm of A.
|
||
|
*
|
||
|
ANORM = CLANHT( '1', N, D, E )
|
||
|
*
|
||
|
CALL SCOPY( N, D, 1, D( N+1 ), 1 )
|
||
|
IF( N.GT.1 )
|
||
|
$ CALL CCOPY( N-1, E, 1, E( N+1 ), 1 )
|
||
|
*
|
||
|
* Factor the matrix A.
|
||
|
*
|
||
|
CALL CPTTRF( N, D( N+1 ), E( N+1 ), INFO )
|
||
|
*
|
||
|
* Use CPTTRS to solve for one column at a time of
|
||
|
* inv(A), computing the maximum column sum as we go.
|
||
|
*
|
||
|
AINVNM = ZERO
|
||
|
DO 60 I = 1, N
|
||
|
DO 50 J = 1, N
|
||
|
X( J ) = ZERO
|
||
|
50 CONTINUE
|
||
|
X( I ) = ONE
|
||
|
CALL CPTTRS( 'Lower', N, 1, D( N+1 ), E( N+1 ), X,
|
||
|
$ LDA, INFO )
|
||
|
AINVNM = MAX( AINVNM, SCASUM( N, X, 1 ) )
|
||
|
60 CONTINUE
|
||
|
*
|
||
|
* Compute the 1-norm condition number of A.
|
||
|
*
|
||
|
IF( ANORM.LE.ZERO .OR. AINVNM.LE.ZERO ) THEN
|
||
|
RCONDC = ONE
|
||
|
ELSE
|
||
|
RCONDC = ( ONE / ANORM ) / AINVNM
|
||
|
END IF
|
||
|
END IF
|
||
|
*
|
||
|
IF( IFACT.EQ.2 ) THEN
|
||
|
*
|
||
|
* --- Test CPTSV --
|
||
|
*
|
||
|
CALL SCOPY( N, D, 1, D( N+1 ), 1 )
|
||
|
IF( N.GT.1 )
|
||
|
$ CALL CCOPY( N-1, E, 1, E( N+1 ), 1 )
|
||
|
CALL CLACPY( 'Full', N, NRHS, B, LDA, X, LDA )
|
||
|
*
|
||
|
* Factor A as L*D*L' and solve the system A*X = B.
|
||
|
*
|
||
|
SRNAMT = 'CPTSV '
|
||
|
CALL CPTSV( N, NRHS, D( N+1 ), E( N+1 ), X, LDA,
|
||
|
$ INFO )
|
||
|
*
|
||
|
* Check error code from CPTSV .
|
||
|
*
|
||
|
IF( INFO.NE.IZERO )
|
||
|
$ CALL ALAERH( PATH, 'CPTSV ', INFO, IZERO, ' ', N,
|
||
|
$ N, 1, 1, NRHS, IMAT, NFAIL, NERRS,
|
||
|
$ NOUT )
|
||
|
NT = 0
|
||
|
IF( IZERO.EQ.0 ) THEN
|
||
|
*
|
||
|
* Check the factorization by computing the ratio
|
||
|
* norm(L*D*L' - A) / (n * norm(A) * EPS )
|
||
|
*
|
||
|
CALL CPTT01( N, D, E, D( N+1 ), E( N+1 ), WORK,
|
||
|
$ RESULT( 1 ) )
|
||
|
*
|
||
|
* Compute the residual in the solution.
|
||
|
*
|
||
|
CALL CLACPY( 'Full', N, NRHS, B, LDA, WORK, LDA )
|
||
|
CALL CPTT02( 'Lower', N, NRHS, D, E, X, LDA, WORK,
|
||
|
$ LDA, RESULT( 2 ) )
|
||
|
*
|
||
|
* Check solution from generated exact solution.
|
||
|
*
|
||
|
CALL CGET04( N, NRHS, X, LDA, XACT, LDA, RCONDC,
|
||
|
$ RESULT( 3 ) )
|
||
|
NT = 3
|
||
|
END IF
|
||
|
*
|
||
|
* Print information about the tests that did not pass
|
||
|
* the threshold.
|
||
|
*
|
||
|
DO 70 K = 1, NT
|
||
|
IF( RESULT( K ).GE.THRESH ) THEN
|
||
|
IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
|
||
|
$ CALL ALADHD( NOUT, PATH )
|
||
|
WRITE( NOUT, FMT = 9999 )'CPTSV ', N, IMAT, K,
|
||
|
$ RESULT( K )
|
||
|
NFAIL = NFAIL + 1
|
||
|
END IF
|
||
|
70 CONTINUE
|
||
|
NRUN = NRUN + NT
|
||
|
END IF
|
||
|
*
|
||
|
* --- Test CPTSVX ---
|
||
|
*
|
||
|
IF( IFACT.GT.1 ) THEN
|
||
|
*
|
||
|
* Initialize D( N+1:2*N ) and E( N+1:2*N ) to zero.
|
||
|
*
|
||
|
DO 80 I = 1, N - 1
|
||
|
D( N+I ) = ZERO
|
||
|
E( N+I ) = ZERO
|
||
|
80 CONTINUE
|
||
|
IF( N.GT.0 )
|
||
|
$ D( N+N ) = ZERO
|
||
|
END IF
|
||
|
*
|
||
|
CALL CLASET( 'Full', N, NRHS, CMPLX( ZERO ),
|
||
|
$ CMPLX( ZERO ), X, LDA )
|
||
|
*
|
||
|
* Solve the system and compute the condition number and
|
||
|
* error bounds using CPTSVX.
|
||
|
*
|
||
|
SRNAMT = 'CPTSVX'
|
||
|
CALL CPTSVX( FACT, N, NRHS, D, E, D( N+1 ), E( N+1 ), B,
|
||
|
$ LDA, X, LDA, RCOND, RWORK, RWORK( NRHS+1 ),
|
||
|
$ WORK, RWORK( 2*NRHS+1 ), INFO )
|
||
|
*
|
||
|
* Check the error code from CPTSVX.
|
||
|
*
|
||
|
IF( INFO.NE.IZERO )
|
||
|
$ CALL ALAERH( PATH, 'CPTSVX', INFO, IZERO, FACT, N, N,
|
||
|
$ 1, 1, NRHS, IMAT, NFAIL, NERRS, NOUT )
|
||
|
IF( IZERO.EQ.0 ) THEN
|
||
|
IF( IFACT.EQ.2 ) THEN
|
||
|
*
|
||
|
* Check the factorization by computing the ratio
|
||
|
* norm(L*D*L' - A) / (n * norm(A) * EPS )
|
||
|
*
|
||
|
K1 = 1
|
||
|
CALL CPTT01( N, D, E, D( N+1 ), E( N+1 ), WORK,
|
||
|
$ RESULT( 1 ) )
|
||
|
ELSE
|
||
|
K1 = 2
|
||
|
END IF
|
||
|
*
|
||
|
* Compute the residual in the solution.
|
||
|
*
|
||
|
CALL CLACPY( 'Full', N, NRHS, B, LDA, WORK, LDA )
|
||
|
CALL CPTT02( 'Lower', N, NRHS, D, E, X, LDA, WORK,
|
||
|
$ LDA, RESULT( 2 ) )
|
||
|
*
|
||
|
* Check solution from generated exact solution.
|
||
|
*
|
||
|
CALL CGET04( N, NRHS, X, LDA, XACT, LDA, RCONDC,
|
||
|
$ RESULT( 3 ) )
|
||
|
*
|
||
|
* Check error bounds from iterative refinement.
|
||
|
*
|
||
|
CALL CPTT05( N, NRHS, D, E, B, LDA, X, LDA, XACT, LDA,
|
||
|
$ RWORK, RWORK( NRHS+1 ), RESULT( 4 ) )
|
||
|
ELSE
|
||
|
K1 = 6
|
||
|
END IF
|
||
|
*
|
||
|
* Check the reciprocal of the condition number.
|
||
|
*
|
||
|
RESULT( 6 ) = SGET06( RCOND, RCONDC )
|
||
|
*
|
||
|
* Print information about the tests that did not pass
|
||
|
* the threshold.
|
||
|
*
|
||
|
DO 90 K = K1, 6
|
||
|
IF( RESULT( K ).GE.THRESH ) THEN
|
||
|
IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
|
||
|
$ CALL ALADHD( NOUT, PATH )
|
||
|
WRITE( NOUT, FMT = 9998 )'CPTSVX', FACT, N, IMAT,
|
||
|
$ K, RESULT( K )
|
||
|
NFAIL = NFAIL + 1
|
||
|
END IF
|
||
|
90 CONTINUE
|
||
|
NRUN = NRUN + 7 - K1
|
||
|
100 CONTINUE
|
||
|
110 CONTINUE
|
||
|
120 CONTINUE
|
||
|
*
|
||
|
* Print a summary of the results.
|
||
|
*
|
||
|
CALL ALASVM( PATH, NOUT, NFAIL, NRUN, NERRS )
|
||
|
*
|
||
|
9999 FORMAT( 1X, A, ', N =', I5, ', type ', I2, ', test ', I2,
|
||
|
$ ', ratio = ', G12.5 )
|
||
|
9998 FORMAT( 1X, A, ', FACT=''', A1, ''', N =', I5, ', type ', I2,
|
||
|
$ ', test ', I2, ', ratio = ', G12.5 )
|
||
|
RETURN
|
||
|
*
|
||
|
* End of CDRVPT
|
||
|
*
|
||
|
END
|