Cloned library LAPACK-3.11.0 with extra build files for internal package management.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

254 lines
7.4 KiB

2 years ago
*> \brief \b CERRGT
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE CERRGT( PATH, NUNIT )
*
* .. Scalar Arguments ..
* CHARACTER*3 PATH
* INTEGER NUNIT
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> CERRGT tests the error exits for the COMPLEX tridiagonal
*> routines.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] PATH
*> \verbatim
*> PATH is CHARACTER*3
*> The LAPACK path name for the routines to be tested.
*> \endverbatim
*>
*> \param[in] NUNIT
*> \verbatim
*> NUNIT is INTEGER
*> The unit number for output.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup complex_lin
*
* =====================================================================
SUBROUTINE CERRGT( PATH, NUNIT )
*
* -- LAPACK test routine --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
CHARACTER*3 PATH
INTEGER NUNIT
* ..
*
* =====================================================================
*
* .. Parameters ..
INTEGER NMAX
PARAMETER ( NMAX = 2 )
* ..
* .. Local Scalars ..
CHARACTER*2 C2
INTEGER I, INFO
REAL ANORM, RCOND
* ..
* .. Local Arrays ..
INTEGER IP( NMAX )
REAL D( NMAX ), DF( NMAX ), R1( NMAX ), R2( NMAX ),
$ RW( NMAX )
COMPLEX B( NMAX ), DL( NMAX ), DLF( NMAX ), DU( NMAX ),
$ DU2( NMAX ), DUF( NMAX ), E( NMAX ),
$ EF( NMAX ), W( NMAX ), X( NMAX )
* ..
* .. External Functions ..
LOGICAL LSAMEN
EXTERNAL LSAMEN
* ..
* .. External Subroutines ..
EXTERNAL ALAESM, CGTCON, CGTRFS, CGTTRF, CGTTRS, CHKXER,
$ CPTCON, CPTRFS, CPTTRF, CPTTRS
* ..
* .. Scalars in Common ..
LOGICAL LERR, OK
CHARACTER*32 SRNAMT
INTEGER INFOT, NOUT
* ..
* .. Common blocks ..
COMMON / INFOC / INFOT, NOUT, OK, LERR
COMMON / SRNAMC / SRNAMT
* ..
* .. Executable Statements ..
*
NOUT = NUNIT
WRITE( NOUT, FMT = * )
C2 = PATH( 2: 3 )
DO 10 I = 1, NMAX
D( I ) = 1.
E( I ) = 2.
DL( I ) = 3.
DU( I ) = 4.
10 CONTINUE
ANORM = 1.0
OK = .TRUE.
*
IF( LSAMEN( 2, C2, 'GT' ) ) THEN
*
* Test error exits for the general tridiagonal routines.
*
* CGTTRF
*
SRNAMT = 'CGTTRF'
INFOT = 1
CALL CGTTRF( -1, DL, E, DU, DU2, IP, INFO )
CALL CHKXER( 'CGTTRF', INFOT, NOUT, LERR, OK )
*
* CGTTRS
*
SRNAMT = 'CGTTRS'
INFOT = 1
CALL CGTTRS( '/', 0, 0, DL, E, DU, DU2, IP, X, 1, INFO )
CALL CHKXER( 'CGTTRS', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL CGTTRS( 'N', -1, 0, DL, E, DU, DU2, IP, X, 1, INFO )
CALL CHKXER( 'CGTTRS', INFOT, NOUT, LERR, OK )
INFOT = 3
CALL CGTTRS( 'N', 0, -1, DL, E, DU, DU2, IP, X, 1, INFO )
CALL CHKXER( 'CGTTRS', INFOT, NOUT, LERR, OK )
INFOT = 10
CALL CGTTRS( 'N', 2, 1, DL, E, DU, DU2, IP, X, 1, INFO )
CALL CHKXER( 'CGTTRS', INFOT, NOUT, LERR, OK )
*
* CGTRFS
*
SRNAMT = 'CGTRFS'
INFOT = 1
CALL CGTRFS( '/', 0, 0, DL, E, DU, DLF, EF, DUF, DU2, IP, B, 1,
$ X, 1, R1, R2, W, RW, INFO )
CALL CHKXER( 'CGTRFS', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL CGTRFS( 'N', -1, 0, DL, E, DU, DLF, EF, DUF, DU2, IP, B,
$ 1, X, 1, R1, R2, W, RW, INFO )
CALL CHKXER( 'CGTRFS', INFOT, NOUT, LERR, OK )
INFOT = 3
CALL CGTRFS( 'N', 0, -1, DL, E, DU, DLF, EF, DUF, DU2, IP, B,
$ 1, X, 1, R1, R2, W, RW, INFO )
CALL CHKXER( 'CGTRFS', INFOT, NOUT, LERR, OK )
INFOT = 13
CALL CGTRFS( 'N', 2, 1, DL, E, DU, DLF, EF, DUF, DU2, IP, B, 1,
$ X, 2, R1, R2, W, RW, INFO )
CALL CHKXER( 'CGTRFS', INFOT, NOUT, LERR, OK )
INFOT = 15
CALL CGTRFS( 'N', 2, 1, DL, E, DU, DLF, EF, DUF, DU2, IP, B, 2,
$ X, 1, R1, R2, W, RW, INFO )
CALL CHKXER( 'CGTRFS', INFOT, NOUT, LERR, OK )
*
* CGTCON
*
SRNAMT = 'CGTCON'
INFOT = 1
CALL CGTCON( '/', 0, DL, E, DU, DU2, IP, ANORM, RCOND, W,
$ INFO )
CALL CHKXER( 'CGTCON', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL CGTCON( 'I', -1, DL, E, DU, DU2, IP, ANORM, RCOND, W,
$ INFO )
CALL CHKXER( 'CGTCON', INFOT, NOUT, LERR, OK )
INFOT = 8
CALL CGTCON( 'I', 0, DL, E, DU, DU2, IP, -ANORM, RCOND, W,
$ INFO )
CALL CHKXER( 'CGTCON', INFOT, NOUT, LERR, OK )
*
ELSE IF( LSAMEN( 2, C2, 'PT' ) ) THEN
*
* Test error exits for the positive definite tridiagonal
* routines.
*
* CPTTRF
*
SRNAMT = 'CPTTRF'
INFOT = 1
CALL CPTTRF( -1, D, E, INFO )
CALL CHKXER( 'CPTTRF', INFOT, NOUT, LERR, OK )
*
* CPTTRS
*
SRNAMT = 'CPTTRS'
INFOT = 1
CALL CPTTRS( '/', 1, 0, D, E, X, 1, INFO )
CALL CHKXER( 'CPTTRS', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL CPTTRS( 'U', -1, 0, D, E, X, 1, INFO )
CALL CHKXER( 'CPTTRS', INFOT, NOUT, LERR, OK )
INFOT = 3
CALL CPTTRS( 'U', 0, -1, D, E, X, 1, INFO )
CALL CHKXER( 'CPTTRS', INFOT, NOUT, LERR, OK )
INFOT = 7
CALL CPTTRS( 'U', 2, 1, D, E, X, 1, INFO )
CALL CHKXER( 'CPTTRS', INFOT, NOUT, LERR, OK )
*
* CPTRFS
*
SRNAMT = 'CPTRFS'
INFOT = 1
CALL CPTRFS( '/', 1, 0, D, E, DF, EF, B, 1, X, 1, R1, R2, W,
$ RW, INFO )
CALL CHKXER( 'CPTRFS', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL CPTRFS( 'U', -1, 0, D, E, DF, EF, B, 1, X, 1, R1, R2, W,
$ RW, INFO )
CALL CHKXER( 'CPTRFS', INFOT, NOUT, LERR, OK )
INFOT = 3
CALL CPTRFS( 'U', 0, -1, D, E, DF, EF, B, 1, X, 1, R1, R2, W,
$ RW, INFO )
CALL CHKXER( 'CPTRFS', INFOT, NOUT, LERR, OK )
INFOT = 9
CALL CPTRFS( 'U', 2, 1, D, E, DF, EF, B, 1, X, 2, R1, R2, W,
$ RW, INFO )
CALL CHKXER( 'CPTRFS', INFOT, NOUT, LERR, OK )
INFOT = 11
CALL CPTRFS( 'U', 2, 1, D, E, DF, EF, B, 2, X, 1, R1, R2, W,
$ RW, INFO )
CALL CHKXER( 'CPTRFS', INFOT, NOUT, LERR, OK )
*
* CPTCON
*
SRNAMT = 'CPTCON'
INFOT = 1
CALL CPTCON( -1, D, E, ANORM, RCOND, RW, INFO )
CALL CHKXER( 'CPTCON', INFOT, NOUT, LERR, OK )
INFOT = 4
CALL CPTCON( 0, D, E, -ANORM, RCOND, RW, INFO )
CALL CHKXER( 'CPTCON', INFOT, NOUT, LERR, OK )
END IF
*
* Print a summary line.
*
CALL ALAESM( PATH, OK, NOUT )
*
RETURN
*
* End of CERRGT
*
END