Cloned library LAPACK-3.11.0 with extra build files for internal package management.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

665 lines
23 KiB

2 years ago
*> \brief \b CERRSY
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE CERRSY( PATH, NUNIT )
*
* .. Scalar Arguments ..
* CHARACTER*3 PATH
* INTEGER NUNIT
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> CERRSY tests the error exits for the COMPLEX routines
*> for symmetric indefinite matrices.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] PATH
*> \verbatim
*> PATH is CHARACTER*3
*> The LAPACK path name for the routines to be tested.
*> \endverbatim
*>
*> \param[in] NUNIT
*> \verbatim
*> NUNIT is INTEGER
*> The unit number for output.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup complex_lin
*
* =====================================================================
SUBROUTINE CERRSY( PATH, NUNIT )
*
* -- LAPACK test routine --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
CHARACTER*3 PATH
INTEGER NUNIT
* ..
*
* =====================================================================
*
* .. Parameters ..
INTEGER NMAX
PARAMETER ( NMAX = 4 )
* ..
* .. Local Scalars ..
CHARACTER*2 C2
INTEGER I, INFO, J
REAL ANRM, RCOND
* ..
* .. Local Arrays ..
INTEGER IP( NMAX )
REAL R( NMAX ), R1( NMAX ), R2( NMAX )
COMPLEX A( NMAX, NMAX ), AF( NMAX, NMAX ), B( NMAX ),
$ E( NMAX), W( 2*NMAX ), X( NMAX )
* ..
* .. External Functions ..
LOGICAL LSAMEN
EXTERNAL LSAMEN
* ..
* .. External Subroutines ..
EXTERNAL ALAESM, CHKXER, CSPCON, CSPRFS, CSPTRF, CSPTRI,
$ CSPTRS, CSYCON, CSYCON_3, CSYCON_ROOK, CSYRFS,
$ CSYTF2, CSYTF2_RK, CSYTF2_ROOK, CSYTRF,
$ CSYTRF_RK, CSYTRF_ROOK, CSYTRI, CSYTRI_3,
$ CSYTRI_3X, CSYTRI_ROOK, CSYTRI2, CSYTRI2X,
$ CSYTRS, CSYTRS_3, CSYTRS_ROOK
* ..
* .. Scalars in Common ..
LOGICAL LERR, OK
CHARACTER*32 SRNAMT
INTEGER INFOT, NOUT
* ..
* .. Common blocks ..
COMMON / INFOC / INFOT, NOUT, OK, LERR
COMMON / SRNAMC / SRNAMT
* ..
* .. Intrinsic Functions ..
INTRINSIC CMPLX, REAL
* ..
* .. Executable Statements ..
*
NOUT = NUNIT
WRITE( NOUT, FMT = * )
C2 = PATH( 2: 3 )
*
* Set the variables to innocuous values.
*
DO 20 J = 1, NMAX
DO 10 I = 1, NMAX
A( I, J ) = CMPLX( 1. / REAL( I+J ), -1. / REAL( I+J ) )
AF( I, J ) = CMPLX( 1. / REAL( I+J ), -1. / REAL( I+J ) )
10 CONTINUE
B( J ) = 0.E0
E( J ) = 0.E0
R1( J ) = 0.E0
R2( J ) = 0.E0
W( J ) = 0.E0
X( J ) = 0.E0
IP( J ) = J
20 CONTINUE
ANRM = 1.0
OK = .TRUE.
*
IF( LSAMEN( 2, C2, 'SY' ) ) THEN
*
* Test error exits of the routines that use factorization
* of a symmetric indefinite matrix with partial
* (Bunch-Kaufman) diagonal pivoting method.
*
* CSYTRF
*
SRNAMT = 'CSYTRF'
INFOT = 1
CALL CSYTRF( '/', 0, A, 1, IP, W, 1, INFO )
CALL CHKXER( 'CSYTRF', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL CSYTRF( 'U', -1, A, 1, IP, W, 1, INFO )
CALL CHKXER( 'CSYTRF', INFOT, NOUT, LERR, OK )
INFOT = 4
CALL CSYTRF( 'U', 2, A, 1, IP, W, 4, INFO )
CALL CHKXER( 'CSYTRF', INFOT, NOUT, LERR, OK )
INFOT = 7
CALL CSYTRF( 'U', 0, A, 1, IP, W, 0, INFO )
CALL CHKXER( 'CSYTRF', INFOT, NOUT, LERR, OK )
INFOT = 7
CALL CSYTRF( 'U', 0, A, 1, IP, W, -2, INFO )
CALL CHKXER( 'CSYTRF', INFOT, NOUT, LERR, OK )
*
* CSYTF2
*
SRNAMT = 'CSYTF2'
INFOT = 1
CALL CSYTF2( '/', 0, A, 1, IP, INFO )
CALL CHKXER( 'CSYTF2', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL CSYTF2( 'U', -1, A, 1, IP, INFO )
CALL CHKXER( 'CSYTF2', INFOT, NOUT, LERR, OK )
INFOT = 4
CALL CSYTF2( 'U', 2, A, 1, IP, INFO )
CALL CHKXER( 'CSYTF2', INFOT, NOUT, LERR, OK )
*
* CSYTRI
*
SRNAMT = 'CSYTRI'
INFOT = 1
CALL CSYTRI( '/', 0, A, 1, IP, W, INFO )
CALL CHKXER( 'CSYTRI', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL CSYTRI( 'U', -1, A, 1, IP, W, INFO )
CALL CHKXER( 'CSYTRI', INFOT, NOUT, LERR, OK )
INFOT = 4
CALL CSYTRI( 'U', 2, A, 1, IP, W, INFO )
CALL CHKXER( 'CSYTRI', INFOT, NOUT, LERR, OK )
*
* CSYTRI2
*
SRNAMT = 'CSYTRI2'
INFOT = 1
CALL CSYTRI2( '/', 0, A, 1, IP, W, 1, INFO )
CALL CHKXER( 'CSYTRI2', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL CSYTRI2( 'U', -1, A, 1, IP, W, 1, INFO )
CALL CHKXER( 'CSYTRI2', INFOT, NOUT, LERR, OK )
INFOT = 4
CALL CSYTRI2( 'U', 2, A, 1, IP, W, 1, INFO )
CALL CHKXER( 'CSYTRI2', INFOT, NOUT, LERR, OK )
*
* CSYTRI2X
*
SRNAMT = 'CSYTRI2X'
INFOT = 1
CALL CSYTRI2X( '/', 0, A, 1, IP, W, 1, INFO )
CALL CHKXER( 'CSYTRI2X', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL CSYTRI2X( 'U', -1, A, 1, IP, W, 1, INFO )
CALL CHKXER( 'CSYTRI2X', INFOT, NOUT, LERR, OK )
INFOT = 4
CALL CSYTRI2X( 'U', 2, A, 1, IP, W, 1, INFO )
CALL CHKXER( 'CSYTRI2X', INFOT, NOUT, LERR, OK )
*
* CSYTRS
*
SRNAMT = 'CSYTRS'
INFOT = 1
CALL CSYTRS( '/', 0, 0, A, 1, IP, B, 1, INFO )
CALL CHKXER( 'CSYTRS', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL CSYTRS( 'U', -1, 0, A, 1, IP, B, 1, INFO )
CALL CHKXER( 'CSYTRS', INFOT, NOUT, LERR, OK )
INFOT = 3
CALL CSYTRS( 'U', 0, -1, A, 1, IP, B, 1, INFO )
CALL CHKXER( 'CSYTRS', INFOT, NOUT, LERR, OK )
INFOT = 5
CALL CSYTRS( 'U', 2, 1, A, 1, IP, B, 2, INFO )
CALL CHKXER( 'CSYTRS', INFOT, NOUT, LERR, OK )
INFOT = 8
CALL CSYTRS( 'U', 2, 1, A, 2, IP, B, 1, INFO )
CALL CHKXER( 'CSYTRS', INFOT, NOUT, LERR, OK )
*
* CSYRFS
*
SRNAMT = 'CSYRFS'
INFOT = 1
CALL CSYRFS( '/', 0, 0, A, 1, AF, 1, IP, B, 1, X, 1, R1, R2, W,
$ R, INFO )
CALL CHKXER( 'CSYRFS', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL CSYRFS( 'U', -1, 0, A, 1, AF, 1, IP, B, 1, X, 1, R1, R2,
$ W, R, INFO )
CALL CHKXER( 'CSYRFS', INFOT, NOUT, LERR, OK )
INFOT = 3
CALL CSYRFS( 'U', 0, -1, A, 1, AF, 1, IP, B, 1, X, 1, R1, R2,
$ W, R, INFO )
CALL CHKXER( 'CSYRFS', INFOT, NOUT, LERR, OK )
INFOT = 5
CALL CSYRFS( 'U', 2, 1, A, 1, AF, 2, IP, B, 2, X, 2, R1, R2, W,
$ R, INFO )
CALL CHKXER( 'CSYRFS', INFOT, NOUT, LERR, OK )
INFOT = 7
CALL CSYRFS( 'U', 2, 1, A, 2, AF, 1, IP, B, 2, X, 2, R1, R2, W,
$ R, INFO )
CALL CHKXER( 'CSYRFS', INFOT, NOUT, LERR, OK )
INFOT = 10
CALL CSYRFS( 'U', 2, 1, A, 2, AF, 2, IP, B, 1, X, 2, R1, R2, W,
$ R, INFO )
CALL CHKXER( 'CSYRFS', INFOT, NOUT, LERR, OK )
INFOT = 12
CALL CSYRFS( 'U', 2, 1, A, 2, AF, 2, IP, B, 2, X, 1, R1, R2, W,
$ R, INFO )
CALL CHKXER( 'CSYRFS', INFOT, NOUT, LERR, OK )
*
* CSYCON
*
SRNAMT = 'CSYCON'
INFOT = 1
CALL CSYCON( '/', 0, A, 1, IP, ANRM, RCOND, W, INFO )
CALL CHKXER( 'CSYCON', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL CSYCON( 'U', -1, A, 1, IP, ANRM, RCOND, W, INFO )
CALL CHKXER( 'CSYCON', INFOT, NOUT, LERR, OK )
INFOT = 4
CALL CSYCON( 'U', 2, A, 1, IP, ANRM, RCOND, W, INFO )
CALL CHKXER( 'CSYCON', INFOT, NOUT, LERR, OK )
INFOT = 6
CALL CSYCON( 'U', 1, A, 1, IP, -ANRM, RCOND, W, INFO )
CALL CHKXER( 'CSYCON', INFOT, NOUT, LERR, OK )
*
ELSE IF( LSAMEN( 2, C2, 'SR' ) ) THEN
*
* Test error exits of the routines that use factorization
* of a symmetric indefinite matrix with rook
* (bounded Bunch-Kaufman) diagonal pivoting method.
*
* CSYTRF_ROOK
*
SRNAMT = 'CSYTRF_ROOK'
INFOT = 1
CALL CSYTRF_ROOK( '/', 0, A, 1, IP, W, 1, INFO )
CALL CHKXER( 'CSYTRF_ROOK', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL CSYTRF_ROOK( 'U', -1, A, 1, IP, W, 1, INFO )
CALL CHKXER( 'CSYTRF_ROOK', INFOT, NOUT, LERR, OK )
INFOT = 4
CALL CSYTRF_ROOK( 'U', 2, A, 1, IP, W, 4, INFO )
CALL CHKXER( 'CSYTRF_ROOK', INFOT, NOUT, LERR, OK )
INFOT = 7
CALL CSYTRF_ROOK( 'U', 0, A, 1, IP, W, 0, INFO )
CALL CHKXER( 'CSYTRF_ROOK', INFOT, NOUT, LERR, OK )
INFOT = 7
CALL CSYTRF_ROOK( 'U', 0, A, 1, IP, W, -2, INFO )
CALL CHKXER( 'CSYTRF_ROOK', INFOT, NOUT, LERR, OK )
*
* CSYTF2_ROOK
*
SRNAMT = 'CSYTF2_ROOK'
INFOT = 1
CALL CSYTF2_ROOK( '/', 0, A, 1, IP, INFO )
CALL CHKXER( 'CSYTF2_ROOK', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL CSYTF2_ROOK( 'U', -1, A, 1, IP, INFO )
CALL CHKXER( 'CSYTF2_ROOK', INFOT, NOUT, LERR, OK )
INFOT = 4
CALL CSYTF2_ROOK( 'U', 2, A, 1, IP, INFO )
CALL CHKXER( 'CSYTF2_ROOK', INFOT, NOUT, LERR, OK )
*
* CSYTRI_ROOK
*
SRNAMT = 'CSYTRI_ROOK'
INFOT = 1
CALL CSYTRI_ROOK( '/', 0, A, 1, IP, W, INFO )
CALL CHKXER( 'CSYTRI_ROOK', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL CSYTRI_ROOK( 'U', -1, A, 1, IP, W, INFO )
CALL CHKXER( 'CSYTRI_ROOK', INFOT, NOUT, LERR, OK )
INFOT = 4
CALL CSYTRI_ROOK( 'U', 2, A, 1, IP, W, INFO )
CALL CHKXER( 'CSYTRI_ROOK', INFOT, NOUT, LERR, OK )
*
* CSYTRS_ROOK
*
SRNAMT = 'CSYTRS_ROOK'
INFOT = 1
CALL CSYTRS_ROOK( '/', 0, 0, A, 1, IP, B, 1, INFO )
CALL CHKXER( 'CSYTRS_ROOK', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL CSYTRS_ROOK( 'U', -1, 0, A, 1, IP, B, 1, INFO )
CALL CHKXER( 'CSYTRS_ROOK', INFOT, NOUT, LERR, OK )
INFOT = 3
CALL CSYTRS_ROOK( 'U', 0, -1, A, 1, IP, B, 1, INFO )
CALL CHKXER( 'CSYTRS_ROOK', INFOT, NOUT, LERR, OK )
INFOT = 5
CALL CSYTRS_ROOK( 'U', 2, 1, A, 1, IP, B, 2, INFO )
CALL CHKXER( 'CSYTRS_ROOK', INFOT, NOUT, LERR, OK )
INFOT = 8
CALL CSYTRS_ROOK( 'U', 2, 1, A, 2, IP, B, 1, INFO )
CALL CHKXER( 'CSYTRS_ROOK', INFOT, NOUT, LERR, OK )
*
* CSYCON_ROOK
*
SRNAMT = 'CSYCON_ROOK'
INFOT = 1
CALL CSYCON_ROOK( '/', 0, A, 1, IP, ANRM, RCOND, W, INFO )
CALL CHKXER( 'CSYCON_ROOK', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL CSYCON_ROOK( 'U', -1, A, 1, IP, ANRM, RCOND, W, INFO )
CALL CHKXER( 'CSYCON_ROOK', INFOT, NOUT, LERR, OK )
INFOT = 4
CALL CSYCON_ROOK( 'U', 2, A, 1, IP, ANRM, RCOND, W, INFO )
CALL CHKXER( 'CSYCON_ROOK', INFOT, NOUT, LERR, OK )
INFOT = 6
CALL CSYCON_ROOK( 'U', 1, A, 1, IP, -ANRM, RCOND, W, INFO )
CALL CHKXER( 'CSYCON_ROOK', INFOT, NOUT, LERR, OK )
*
ELSE IF( LSAMEN( 2, C2, 'SK' ) ) THEN
*
* Test error exits of the routines that use factorization
* of a symmetric indefinite matrix with rook
* (bounded Bunch-Kaufman) pivoting with the new storage
* format for factors L ( or U) and D.
*
* L (or U) is stored in A, diagonal of D is stored on the
* diagonal of A, subdiagonal of D is stored in a separate array E.
*
* CSYTRF_RK
*
SRNAMT = 'CSYTRF_RK'
INFOT = 1
CALL CSYTRF_RK( '/', 0, A, 1, E, IP, W, 1, INFO )
CALL CHKXER( 'CSYTRF_RK', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL CSYTRF_RK( 'U', -1, A, 1, E, IP, W, 1, INFO )
CALL CHKXER( 'CSYTRF_RK', INFOT, NOUT, LERR, OK )
INFOT = 4
CALL CSYTRF_RK( 'U', 2, A, 1, E, IP, W, 4, INFO )
CALL CHKXER( 'CSYTRF_RK', INFOT, NOUT, LERR, OK )
INFOT = 8
CALL CSYTRF_RK( 'U', 0, A, 1, E, IP, W, 0, INFO )
CALL CHKXER( 'CSYTRF_RK', INFOT, NOUT, LERR, OK )
INFOT = 8
CALL CSYTRF_RK( 'U', 0, A, 1, E, IP, W, -2, INFO )
CALL CHKXER( 'CSYTRF_RK', INFOT, NOUT, LERR, OK )
*
* CSYTF2_RK
*
SRNAMT = 'CSYTF2_RK'
INFOT = 1
CALL CSYTF2_RK( '/', 0, A, 1, E, IP, INFO )
CALL CHKXER( 'CSYTF2_RK', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL CSYTF2_RK( 'U', -1, A, 1, E, IP, INFO )
CALL CHKXER( 'CSYTF2_RK', INFOT, NOUT, LERR, OK )
INFOT = 4
CALL CSYTF2_RK( 'U', 2, A, 1, E, IP, INFO )
CALL CHKXER( 'CSYTF2_RK', INFOT, NOUT, LERR, OK )
*
* CSYTRI_3
*
SRNAMT = 'CSYTRI_3'
INFOT = 1
CALL CSYTRI_3( '/', 0, A, 1, E, IP, W, 1, INFO )
CALL CHKXER( 'CSYTRI_3', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL CSYTRI_3( 'U', -1, A, 1, E, IP, W, 1, INFO )
CALL CHKXER( 'CSYTRI_3', INFOT, NOUT, LERR, OK )
INFOT = 4
CALL CSYTRI_3( 'U', 2, A, 1, E, IP, W, 1, INFO )
CALL CHKXER( 'CSYTRI_3', INFOT, NOUT, LERR, OK )
INFOT = 8
CALL CSYTRI_3( 'U', 0, A, 1, E, IP, W, 0, INFO )
CALL CHKXER( 'CSYTRI_3', INFOT, NOUT, LERR, OK )
INFOT = 8
CALL CSYTRI_3( 'U', 0, A, 1, E, IP, W, -2, INFO )
CALL CHKXER( 'CSYTRI_3', INFOT, NOUT, LERR, OK )
*
* CSYTRI_3X
*
SRNAMT = 'CSYTRI_3X'
INFOT = 1
CALL CSYTRI_3X( '/', 0, A, 1, E, IP, W, 1, INFO )
CALL CHKXER( 'CSYTRI_3X', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL CSYTRI_3X( 'U', -1, A, 1, E, IP, W, 1, INFO )
CALL CHKXER( 'CSYTRI_3X', INFOT, NOUT, LERR, OK )
INFOT = 4
CALL CSYTRI_3X( 'U', 2, A, 1, E, IP, W, 1, INFO )
CALL CHKXER( 'CSYTRI_3X', INFOT, NOUT, LERR, OK )
*
* CSYTRS_3
*
SRNAMT = 'CSYTRS_3'
INFOT = 1
CALL CSYTRS_3( '/', 0, 0, A, 1, E, IP, B, 1, INFO )
CALL CHKXER( 'CSYTRS_3', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL CSYTRS_3( 'U', -1, 0, A, 1, E, IP, B, 1, INFO )
CALL CHKXER( 'CSYTRS_3', INFOT, NOUT, LERR, OK )
INFOT = 3
CALL CSYTRS_3( 'U', 0, -1, A, 1, E, IP, B, 1, INFO )
CALL CHKXER( 'CSYTRS_3', INFOT, NOUT, LERR, OK )
INFOT = 5
CALL CSYTRS_3( 'U', 2, 1, A, 1, E, IP, B, 2, INFO )
CALL CHKXER( 'CSYTRS_3', INFOT, NOUT, LERR, OK )
INFOT = 9
CALL CSYTRS_3( 'U', 2, 1, A, 2, E, IP, B, 1, INFO )
CALL CHKXER( 'CSYTRS_3', INFOT, NOUT, LERR, OK )
*
* CSYCON_3
*
SRNAMT = 'CSYCON_3'
INFOT = 1
CALL CSYCON_3( '/', 0, A, 1, E, IP, ANRM, RCOND, W, INFO )
CALL CHKXER( 'CSYCON_3', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL CSYCON_3( 'U', -1, A, 1, E, IP, ANRM, RCOND, W, INFO )
CALL CHKXER( 'CSYCON_3', INFOT, NOUT, LERR, OK )
INFOT = 4
CALL CSYCON_3( 'U', 2, A, 1, E, IP, ANRM, RCOND, W, INFO )
CALL CHKXER( 'CSYCON_3', INFOT, NOUT, LERR, OK )
INFOT = 7
CALL CSYCON_3( 'U', 1, A, 1, E, IP, -1.0E0, RCOND, W, INFO)
CALL CHKXER( 'CSYCON_3', INFOT, NOUT, LERR, OK )
*
ELSE IF( LSAMEN( 2, C2, 'SP' ) ) THEN
*
* Test error exits of the routines that use factorization
* of a symmetric indefinite packed matrix with partial
* (Bunch-Kaufman) diagonal pivoting method.
*
* CSPTRF
*
SRNAMT = 'CSPTRF'
INFOT = 1
CALL CSPTRF( '/', 0, A, IP, INFO )
CALL CHKXER( 'CSPTRF', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL CSPTRF( 'U', -1, A, IP, INFO )
CALL CHKXER( 'CSPTRF', INFOT, NOUT, LERR, OK )
*
* CSPTRI
*
SRNAMT = 'CSPTRI'
INFOT = 1
CALL CSPTRI( '/', 0, A, IP, W, INFO )
CALL CHKXER( 'CSPTRI', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL CSPTRI( 'U', -1, A, IP, W, INFO )
CALL CHKXER( 'CSPTRI', INFOT, NOUT, LERR, OK )
*
* CSPTRS
*
SRNAMT = 'CSPTRS'
INFOT = 1
CALL CSPTRS( '/', 0, 0, A, IP, B, 1, INFO )
CALL CHKXER( 'CSPTRS', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL CSPTRS( 'U', -1, 0, A, IP, B, 1, INFO )
CALL CHKXER( 'CSPTRS', INFOT, NOUT, LERR, OK )
INFOT = 3
CALL CSPTRS( 'U', 0, -1, A, IP, B, 1, INFO )
CALL CHKXER( 'CSPTRS', INFOT, NOUT, LERR, OK )
INFOT = 7
CALL CSPTRS( 'U', 2, 1, A, IP, B, 1, INFO )
CALL CHKXER( 'CSPTRS', INFOT, NOUT, LERR, OK )
*
* CSPRFS
*
SRNAMT = 'CSPRFS'
INFOT = 1
CALL CSPRFS( '/', 0, 0, A, AF, IP, B, 1, X, 1, R1, R2, W, R,
$ INFO )
CALL CHKXER( 'CSPRFS', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL CSPRFS( 'U', -1, 0, A, AF, IP, B, 1, X, 1, R1, R2, W, R,
$ INFO )
CALL CHKXER( 'CSPRFS', INFOT, NOUT, LERR, OK )
INFOT = 3
CALL CSPRFS( 'U', 0, -1, A, AF, IP, B, 1, X, 1, R1, R2, W, R,
$ INFO )
CALL CHKXER( 'CSPRFS', INFOT, NOUT, LERR, OK )
INFOT = 8
CALL CSPRFS( 'U', 2, 1, A, AF, IP, B, 1, X, 2, R1, R2, W, R,
$ INFO )
CALL CHKXER( 'CSPRFS', INFOT, NOUT, LERR, OK )
INFOT = 10
CALL CSPRFS( 'U', 2, 1, A, AF, IP, B, 2, X, 1, R1, R2, W, R,
$ INFO )
CALL CHKXER( 'CSPRFS', INFOT, NOUT, LERR, OK )
*
* CSPCON
*
SRNAMT = 'CSPCON'
INFOT = 1
CALL CSPCON( '/', 0, A, IP, ANRM, RCOND, W, INFO )
CALL CHKXER( 'CSPCON', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL CSPCON( 'U', -1, A, IP, ANRM, RCOND, W, INFO )
CALL CHKXER( 'CSPCON', INFOT, NOUT, LERR, OK )
INFOT = 5
CALL CSPCON( 'U', 1, A, IP, -ANRM, RCOND, W, INFO )
CALL CHKXER( 'CSPCON', INFOT, NOUT, LERR, OK )
*
ELSE IF( LSAMEN( 2, C2, 'SA' ) ) THEN
*
* Test error exits of the routines that use factorization
* of a symmetric indefinite matrix with Aasen's algorithm
*
* CSYTRF_AA
*
SRNAMT = 'CSYTRF_AA'
INFOT = 1
CALL CSYTRF_AA( '/', 0, A, 1, IP, W, 1, INFO )
CALL CHKXER( 'CSYTRF_AA', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL CSYTRF_AA( 'U', -1, A, 1, IP, W, 1, INFO )
CALL CHKXER( 'CSYTRF_AA', INFOT, NOUT, LERR, OK )
INFOT = 4
CALL CSYTRF_AA( 'U', 2, A, 1, IP, W, 4, INFO )
CALL CHKXER( 'CSYTRF_AA', INFOT, NOUT, LERR, OK )
INFOT = 7
CALL CSYTRF_AA( 'U', 0, A, 1, IP, W, 0, INFO )
CALL CHKXER( 'CSYTRF_AA', INFOT, NOUT, LERR, OK )
INFOT = 7
CALL CSYTRF_AA( 'U', 0, A, 1, IP, W, -2, INFO )
CALL CHKXER( 'CSYTRF_AA', INFOT, NOUT, LERR, OK )
*
* CSYTRS_AA
*
SRNAMT = 'CSYTRS_AA'
INFOT = 1
CALL CSYTRS_AA( '/', 0, 0, A, 1, IP, B, 1, W, 1, INFO )
CALL CHKXER( 'CSYTRS_AA', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL CSYTRS_AA( 'U', -1, 0, A, 1, IP, B, 1, W, 1, INFO )
CALL CHKXER( 'CSYTRS_AA', INFOT, NOUT, LERR, OK )
INFOT = 3
CALL CSYTRS_AA( 'U', 0, -1, A, 1, IP, B, 1, W, 1, INFO )
CALL CHKXER( 'CSYTRS_AA', INFOT, NOUT, LERR, OK )
INFOT = 5
CALL CSYTRS_AA( 'U', 2, 1, A, 1, IP, B, 2, W, 1, INFO )
CALL CHKXER( 'CSYTRS_AA', INFOT, NOUT, LERR, OK )
INFOT = 8
CALL CSYTRS_AA( 'U', 2, 1, A, 2, IP, B, 1, W, 1, INFO )
CALL CHKXER( 'CSYTRS_AA', INFOT, NOUT, LERR, OK )
INFOT = 10
CALL CSYTRS_AA( 'U', 0, 1, A, 1, IP, B, 1, W, 0, INFO )
CALL CHKXER( 'CSYTRS_AA', INFOT, NOUT, LERR, OK )
INFOT = 10
CALL CSYTRS_AA( 'U', 0, 1, A, 1, IP, B, 1, W, -2, INFO )
CALL CHKXER( 'CSYTRS_AA', INFOT, NOUT, LERR, OK )
*
ELSE IF( LSAMEN( 2, C2, 'S2' ) ) THEN
*
* Test error exits of the routines that use factorization
* of a symmetric indefinite matrix with Aasen's algorithm.
*
* CSYTRF_AA_2STAGE
*
SRNAMT = 'CSYTRF_AA_2STAGE'
INFOT = 1
CALL CSYTRF_AA_2STAGE( '/', 0, A, 1, A, 1, IP, IP, W, 1,
$ INFO )
CALL CHKXER( 'CSYTRF_AA_2STAGE', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL CSYTRF_AA_2STAGE( 'U', -1, A, 1, A, 1, IP, IP, W, 1,
$ INFO )
CALL CHKXER( 'CSYTRF_AA_2STAGE', INFOT, NOUT, LERR, OK )
INFOT = 4
CALL CSYTRF_AA_2STAGE( 'U', 2, A, 1, A, 2, IP, IP, W, 1,
$ INFO )
CALL CHKXER( 'CSYTRF_AA_2STAGE', INFOT, NOUT, LERR, OK )
INFOT = 6
CALL CSYTRF_AA_2STAGE( 'U', 2, A, 2, A, 1, IP, IP, W, 1,
$ INFO )
CALL CHKXER( 'CSYTRF_AA_2STAGE', INFOT, NOUT, LERR, OK )
INFOT = 10
CALL CSYTRF_AA_2STAGE( 'U', 2, A, 2, A, 8, IP, IP, W, 0,
$ INFO )
CALL CHKXER( 'CSYTRF_AA_2STAGE', INFOT, NOUT, LERR, OK )
*
* CHETRS_AA_2STAGE
*
SRNAMT = 'CSYTRS_AA_2STAGE'
INFOT = 1
CALL CSYTRS_AA_2STAGE( '/', 0, 0, A, 1, A, 1, IP, IP,
$ B, 1, INFO )
CALL CHKXER( 'CSYTRS_AA_2STAGE', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL CSYTRS_AA_2STAGE( 'U', -1, 0, A, 1, A, 1, IP, IP,
$ B, 1, INFO )
CALL CHKXER( 'CSYTRS_AA_2STAGE', INFOT, NOUT, LERR, OK )
INFOT = 3
CALL CSYTRS_AA_2STAGE( 'U', 0, -1, A, 1, A, 1, IP, IP,
$ B, 1, INFO )
CALL CHKXER( 'CSYTRS_AA_2STAGE', INFOT, NOUT, LERR, OK )
INFOT = 5
CALL CSYTRS_AA_2STAGE( 'U', 2, 1, A, 1, A, 1, IP, IP,
$ B, 1, INFO )
CALL CHKXER( 'CSYTRS_AA_2STAGE', INFOT, NOUT, LERR, OK )
INFOT = 7
CALL CSYTRS_AA_2STAGE( 'U', 2, 1, A, 2, A, 1, IP, IP,
$ B, 1, INFO )
CALL CHKXER( 'CSYTRS_AA_2STAGE', INFOT, NOUT, LERR, OK )
INFOT = 11
CALL CSYTRS_AA_2STAGE( 'U', 2, 1, A, 2, A, 8, IP, IP,
$ B, 1, INFO )
CALL CHKXER( 'CSYTRS_AA_STAGE', INFOT, NOUT, LERR, OK )
*
END IF
*
* Print a summary line.
*
CALL ALAESM( PATH, OK, NOUT )
*
RETURN
*
* End of CERRSY
*
END