You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
262 lines
7.3 KiB
262 lines
7.3 KiB
2 years ago
|
*> \brief \b CHET01_3
|
||
|
*
|
||
|
* =========== DOCUMENTATION ===========
|
||
|
*
|
||
|
* Online html documentation available at
|
||
|
* http://www.netlib.org/lapack/explore-html/
|
||
|
*
|
||
|
* Definition:
|
||
|
* ===========
|
||
|
*
|
||
|
* SUBROUTINE CHET01_3( UPLO, N, A, LDA, AFAC, LDAFAC, E, IPIV, C,
|
||
|
* LDC, RWORK, RESID )
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
* CHARACTER UPLO
|
||
|
* INTEGER LDA, LDAFAC, LDC, N
|
||
|
* REAL RESID
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
* INTEGER IPIV( * )
|
||
|
* REAL RWORK( * )
|
||
|
* COMPLEX A( LDA, * ), AFAC( LDAFAC, * ), C( LDC, * ),
|
||
|
* E( * )
|
||
|
* ..
|
||
|
*
|
||
|
*
|
||
|
*> \par Purpose:
|
||
|
* =============
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*> CHET01_3 reconstructs a Hermitian indefinite matrix A from its
|
||
|
*> block L*D*L' or U*D*U' factorization computed by CHETRF_RK
|
||
|
*> (or CHETRF_BK) and computes the residual
|
||
|
*> norm( C - A ) / ( N * norm(A) * EPS ),
|
||
|
*> where C is the reconstructed matrix and EPS is the machine epsilon.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Arguments:
|
||
|
* ==========
|
||
|
*
|
||
|
*> \param[in] UPLO
|
||
|
*> \verbatim
|
||
|
*> UPLO is CHARACTER*1
|
||
|
*> Specifies whether the upper or lower triangular part of the
|
||
|
*> Hermitian matrix A is stored:
|
||
|
*> = 'U': Upper triangular
|
||
|
*> = 'L': Lower triangular
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] N
|
||
|
*> \verbatim
|
||
|
*> N is INTEGER
|
||
|
*> The number of rows and columns of the matrix A. N >= 0.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] A
|
||
|
*> \verbatim
|
||
|
*> A is COMPLEX*16 array, dimension (LDA,N)
|
||
|
*> The original Hermitian matrix A.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDA
|
||
|
*> \verbatim
|
||
|
*> LDA is INTEGER
|
||
|
*> The leading dimension of the array A. LDA >= max(1,N)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] AFAC
|
||
|
*> \verbatim
|
||
|
*> AFAC is COMPLEX array, dimension (LDAFAC,N)
|
||
|
*> Diagonal of the block diagonal matrix D and factors U or L
|
||
|
*> as computed by CHETRF_RK and CHETRF_BK:
|
||
|
*> a) ONLY diagonal elements of the Hermitian block diagonal
|
||
|
*> matrix D on the diagonal of A, i.e. D(k,k) = A(k,k);
|
||
|
*> (superdiagonal (or subdiagonal) elements of D
|
||
|
*> should be provided on entry in array E), and
|
||
|
*> b) If UPLO = 'U': factor U in the superdiagonal part of A.
|
||
|
*> If UPLO = 'L': factor L in the subdiagonal part of A.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDAFAC
|
||
|
*> \verbatim
|
||
|
*> LDAFAC is INTEGER
|
||
|
*> The leading dimension of the array AFAC.
|
||
|
*> LDAFAC >= max(1,N).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] E
|
||
|
*> \verbatim
|
||
|
*> E is COMPLEX array, dimension (N)
|
||
|
*> On entry, contains the superdiagonal (or subdiagonal)
|
||
|
*> elements of the Hermitian block diagonal matrix D
|
||
|
*> with 1-by-1 or 2-by-2 diagonal blocks, where
|
||
|
*> If UPLO = 'U': E(i) = D(i-1,i),i=2:N, E(1) not referenced;
|
||
|
*> If UPLO = 'L': E(i) = D(i+1,i),i=1:N-1, E(N) not referenced.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] IPIV
|
||
|
*> \verbatim
|
||
|
*> IPIV is INTEGER array, dimension (N)
|
||
|
*> The pivot indices from CHETRF_RK (or CHETRF_BK).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] C
|
||
|
*> \verbatim
|
||
|
*> C is COMPLEX array, dimension (LDC,N)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDC
|
||
|
*> \verbatim
|
||
|
*> LDC is INTEGER
|
||
|
*> The leading dimension of the array C. LDC >= max(1,N).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] RWORK
|
||
|
*> \verbatim
|
||
|
*> RWORK is REAL array, dimension (N)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] RESID
|
||
|
*> \verbatim
|
||
|
*> RESID is REAL
|
||
|
*> If UPLO = 'L', norm(L*D*L' - A) / ( N * norm(A) * EPS )
|
||
|
*> If UPLO = 'U', norm(U*D*U' - A) / ( N * norm(A) * EPS )
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Authors:
|
||
|
* ========
|
||
|
*
|
||
|
*> \author Univ. of Tennessee
|
||
|
*> \author Univ. of California Berkeley
|
||
|
*> \author Univ. of Colorado Denver
|
||
|
*> \author NAG Ltd.
|
||
|
*
|
||
|
*> \ingroup complex_lin
|
||
|
*
|
||
|
* =====================================================================
|
||
|
SUBROUTINE CHET01_3( UPLO, N, A, LDA, AFAC, LDAFAC, E, IPIV, C,
|
||
|
$ LDC, RWORK, RESID )
|
||
|
*
|
||
|
* -- LAPACK test routine --
|
||
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
CHARACTER UPLO
|
||
|
INTEGER LDA, LDAFAC, LDC, N
|
||
|
REAL RESID
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
INTEGER IPIV( * )
|
||
|
REAL RWORK( * )
|
||
|
COMPLEX A( LDA, * ), AFAC( LDAFAC, * ), C( LDC, * ),
|
||
|
$ E( * )
|
||
|
* ..
|
||
|
*
|
||
|
* =====================================================================
|
||
|
*
|
||
|
* .. Parameters ..
|
||
|
REAL ZERO, ONE
|
||
|
PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
|
||
|
COMPLEX CZERO, CONE
|
||
|
PARAMETER ( CZERO = ( 0.0E+0, 0.0E+0 ),
|
||
|
$ CONE = ( 1.0E+0, 0.0E+0 ) )
|
||
|
* ..
|
||
|
* .. Local Scalars ..
|
||
|
INTEGER I, INFO, J
|
||
|
REAL ANORM, EPS
|
||
|
* ..
|
||
|
* .. External Functions ..
|
||
|
LOGICAL LSAME
|
||
|
REAL CLANHE, SLAMCH
|
||
|
EXTERNAL LSAME, CLANHE, SLAMCH
|
||
|
* ..
|
||
|
* .. External Subroutines ..
|
||
|
EXTERNAL CLASET, CLAVHE_ROOK, CSYCONVF_ROOK
|
||
|
* ..
|
||
|
* .. Intrinsic Functions ..
|
||
|
INTRINSIC AIMAG, REAL
|
||
|
* ..
|
||
|
* .. Executable Statements ..
|
||
|
*
|
||
|
* Quick exit if N = 0.
|
||
|
*
|
||
|
IF( N.LE.0 ) THEN
|
||
|
RESID = ZERO
|
||
|
RETURN
|
||
|
END IF
|
||
|
*
|
||
|
* a) Revert to multipliers of L
|
||
|
*
|
||
|
CALL CSYCONVF_ROOK( UPLO, 'R', N, AFAC, LDAFAC, E, IPIV, INFO )
|
||
|
*
|
||
|
* 1) Determine EPS and the norm of A.
|
||
|
*
|
||
|
EPS = SLAMCH( 'Epsilon' )
|
||
|
ANORM = CLANHE( '1', UPLO, N, A, LDA, RWORK )
|
||
|
*
|
||
|
* Check the imaginary parts of the diagonal elements and return with
|
||
|
* an error code if any are nonzero.
|
||
|
*
|
||
|
DO J = 1, N
|
||
|
IF( AIMAG( AFAC( J, J ) ).NE.ZERO ) THEN
|
||
|
RESID = ONE / EPS
|
||
|
RETURN
|
||
|
END IF
|
||
|
END DO
|
||
|
*
|
||
|
* 2) Initialize C to the identity matrix.
|
||
|
*
|
||
|
CALL CLASET( 'Full', N, N, CZERO, CONE, C, LDC )
|
||
|
*
|
||
|
* 3) Call CLAVHE_ROOK to form the product D * U' (or D * L' ).
|
||
|
*
|
||
|
CALL CLAVHE_ROOK( UPLO, 'Conjugate', 'Non-unit', N, N, AFAC,
|
||
|
$ LDAFAC, IPIV, C, LDC, INFO )
|
||
|
*
|
||
|
* 4) Call ZLAVHE_RK again to multiply by U (or L ).
|
||
|
*
|
||
|
CALL CLAVHE_ROOK( UPLO, 'No transpose', 'Unit', N, N, AFAC,
|
||
|
$ LDAFAC, IPIV, C, LDC, INFO )
|
||
|
*
|
||
|
* 5) Compute the difference C - A .
|
||
|
*
|
||
|
IF( LSAME( UPLO, 'U' ) ) THEN
|
||
|
DO J = 1, N
|
||
|
DO I = 1, J - 1
|
||
|
C( I, J ) = C( I, J ) - A( I, J )
|
||
|
END DO
|
||
|
C( J, J ) = C( J, J ) - REAL( A( J, J ) )
|
||
|
END DO
|
||
|
ELSE
|
||
|
DO J = 1, N
|
||
|
C( J, J ) = C( J, J ) - REAL( A( J, J ) )
|
||
|
DO I = J + 1, N
|
||
|
C( I, J ) = C( I, J ) - A( I, J )
|
||
|
END DO
|
||
|
END DO
|
||
|
END IF
|
||
|
*
|
||
|
* 6) Compute norm( C - A ) / ( N * norm(A) * EPS )
|
||
|
*
|
||
|
RESID = CLANHE( '1', UPLO, N, C, LDC, RWORK )
|
||
|
*
|
||
|
IF( ANORM.LE.ZERO ) THEN
|
||
|
IF( RESID.NE.ZERO )
|
||
|
$ RESID = ONE / EPS
|
||
|
ELSE
|
||
|
RESID = ( ( RESID/REAL( N ) )/ANORM ) / EPS
|
||
|
END IF
|
||
|
*
|
||
|
* b) Convert to factor of L (or U)
|
||
|
*
|
||
|
CALL CSYCONVF_ROOK( UPLO, 'C', N, AFAC, LDAFAC, E, IPIV, INFO )
|
||
|
*
|
||
|
RETURN
|
||
|
*
|
||
|
* End of CHET01_3
|
||
|
*
|
||
|
END
|