Cloned library LAPACK-3.11.0 with extra build files for internal package management.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

456 lines
14 KiB

2 years ago
*> \brief \b DDRVAC
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE DDRVAC( DOTYPE, NM, MVAL, NNS, NSVAL, THRESH, NMAX,
* A, AFAC, B, X, WORK,
* RWORK, SWORK, NOUT )
*
* .. Scalar Arguments ..
* INTEGER NMAX, NM, NNS, NOUT
* DOUBLE PRECISION THRESH
* ..
* .. Array Arguments ..
* LOGICAL DOTYPE( * )
* INTEGER MVAL( * ), NSVAL( * )
* REAL SWORK(*)
* DOUBLE PRECISION A( * ), AFAC( * ), B( * ),
* $ RWORK( * ), WORK( * ), X( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> DDRVAC tests DSPOSV.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] DOTYPE
*> \verbatim
*> DOTYPE is LOGICAL array, dimension (NTYPES)
*> The matrix types to be used for testing. Matrices of type j
*> (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
*> .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
*> \endverbatim
*>
*> \param[in] NM
*> \verbatim
*> NM is INTEGER
*> The number of values of N contained in the vector MVAL.
*> \endverbatim
*>
*> \param[in] MVAL
*> \verbatim
*> MVAL is INTEGER array, dimension (NM)
*> The values of the matrix dimension N.
*> \endverbatim
*>
*> \param[in] NNS
*> \verbatim
*> NNS is INTEGER
*> The number of values of NRHS contained in the vector NSVAL.
*> \endverbatim
*>
*> \param[in] NSVAL
*> \verbatim
*> NSVAL is INTEGER array, dimension (NNS)
*> The values of the number of right hand sides NRHS.
*> \endverbatim
*>
*> \param[in] THRESH
*> \verbatim
*> THRESH is DOUBLE PRECISION
*> The threshold value for the test ratios. A result is
*> included in the output file if RESULT >= THRESH. To have
*> every test ratio printed, use THRESH = 0.
*> \endverbatim
*>
*> \param[in] NMAX
*> \verbatim
*> NMAX is INTEGER
*> The maximum value permitted for N, used in dimensioning the
*> work arrays.
*> \endverbatim
*>
*> \param[out] A
*> \verbatim
*> A is DOUBLE PRECISION array, dimension (NMAX*NMAX)
*> \endverbatim
*>
*> \param[out] AFAC
*> \verbatim
*> AFAC is DOUBLE PRECISION array, dimension (NMAX*NMAX)
*> \endverbatim
*>
*> \param[out] B
*> \verbatim
*> B is DOUBLE PRECISION array, dimension (NMAX*NSMAX)
*> \endverbatim
*>
*> \param[out] X
*> \verbatim
*> X is DOUBLE PRECISION array, dimension (NMAX*NSMAX)
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is DOUBLE PRECISION array, dimension
*> (NMAX*max(3,NSMAX))
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*> RWORK is DOUBLE PRECISION array, dimension
*> (max(2*NMAX,2*NSMAX+NWORK))
*> \endverbatim
*>
*> \param[out] SWORK
*> \verbatim
*> SWORK is REAL array, dimension
*> (NMAX*(NSMAX+NMAX))
*> \endverbatim
*>
*> \param[in] NOUT
*> \verbatim
*> NOUT is INTEGER
*> The unit number for output.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup double_lin
*
* =====================================================================
SUBROUTINE DDRVAC( DOTYPE, NM, MVAL, NNS, NSVAL, THRESH, NMAX,
$ A, AFAC, B, X, WORK,
$ RWORK, SWORK, NOUT )
*
* -- LAPACK test routine --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
INTEGER NMAX, NM, NNS, NOUT
DOUBLE PRECISION THRESH
* ..
* .. Array Arguments ..
LOGICAL DOTYPE( * )
INTEGER MVAL( * ), NSVAL( * )
REAL SWORK(*)
DOUBLE PRECISION A( * ), AFAC( * ), B( * ),
$ RWORK( * ), WORK( * ), X( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO
PARAMETER ( ZERO = 0.0D+0 )
INTEGER NTYPES
PARAMETER ( NTYPES = 9 )
INTEGER NTESTS
PARAMETER ( NTESTS = 1 )
* ..
* .. Local Scalars ..
LOGICAL ZEROT
CHARACTER DIST, TYPE, UPLO, XTYPE
CHARACTER*3 PATH
INTEGER I, IM, IMAT, INFO, IOFF, IRHS, IUPLO,
$ IZERO, KL, KU, LDA, MODE, N,
$ NERRS, NFAIL, NIMAT, NRHS, NRUN
DOUBLE PRECISION ANORM, CNDNUM
* ..
* .. Local Arrays ..
CHARACTER UPLOS( 2 )
INTEGER ISEED( 4 ), ISEEDY( 4 )
DOUBLE PRECISION RESULT( NTESTS )
* ..
* .. Local Variables ..
INTEGER ITER, KASE
* ..
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. External Subroutines ..
EXTERNAL ALAERH, DLACPY,
$ DLARHS, DLASET, DLATB4, DLATMS,
$ DPOT06, DSPOSV
* ..
* .. Intrinsic Functions ..
INTRINSIC DBLE, MAX, SQRT
* ..
* .. Scalars in Common ..
LOGICAL LERR, OK
CHARACTER*32 SRNAMT
INTEGER INFOT, NUNIT
* ..
* .. Common blocks ..
COMMON / INFOC / INFOT, NUNIT, OK, LERR
COMMON / SRNAMC / SRNAMT
* ..
* .. Data statements ..
DATA ISEEDY / 1988, 1989, 1990, 1991 /
DATA UPLOS / 'U', 'L' /
* ..
* .. Executable Statements ..
*
* Initialize constants and the random number seed.
*
KASE = 0
PATH( 1: 1 ) = 'Double precision'
PATH( 2: 3 ) = 'PO'
NRUN = 0
NFAIL = 0
NERRS = 0
DO 10 I = 1, 4
ISEED( I ) = ISEEDY( I )
10 CONTINUE
*
INFOT = 0
*
* Do for each value of N in MVAL
*
DO 120 IM = 1, NM
N = MVAL( IM )
LDA = MAX( N, 1 )
NIMAT = NTYPES
IF( N.LE.0 )
$ NIMAT = 1
*
DO 110 IMAT = 1, NIMAT
*
* Do the tests only if DOTYPE( IMAT ) is true.
*
IF( .NOT.DOTYPE( IMAT ) )
$ GO TO 110
*
* Skip types 3, 4, or 5 if the matrix size is too small.
*
ZEROT = IMAT.GE.3 .AND. IMAT.LE.5
IF( ZEROT .AND. N.LT.IMAT-2 )
$ GO TO 110
*
* Do first for UPLO = 'U', then for UPLO = 'L'
*
DO 100 IUPLO = 1, 2
UPLO = UPLOS( IUPLO )
*
* Set up parameters with DLATB4 and generate a test matrix
* with DLATMS.
*
CALL DLATB4( PATH, IMAT, N, N, TYPE, KL, KU, ANORM, MODE,
$ CNDNUM, DIST )
*
SRNAMT = 'DLATMS'
CALL DLATMS( N, N, DIST, ISEED, TYPE, RWORK, MODE,
$ CNDNUM, ANORM, KL, KU, UPLO, A, LDA, WORK,
$ INFO )
*
* Check error code from DLATMS.
*
IF( INFO.NE.0 ) THEN
CALL ALAERH( PATH, 'DLATMS', INFO, 0, UPLO, N, N, -1,
$ -1, -1, IMAT, NFAIL, NERRS, NOUT )
GO TO 100
END IF
*
* For types 3-5, zero one row and column of the matrix to
* test that INFO is returned correctly.
*
IF( ZEROT ) THEN
IF( IMAT.EQ.3 ) THEN
IZERO = 1
ELSE IF( IMAT.EQ.4 ) THEN
IZERO = N
ELSE
IZERO = N / 2 + 1
END IF
IOFF = ( IZERO-1 )*LDA
*
* Set row and column IZERO of A to 0.
*
IF( IUPLO.EQ.1 ) THEN
DO 20 I = 1, IZERO - 1
A( IOFF+I ) = ZERO
20 CONTINUE
IOFF = IOFF + IZERO
DO 30 I = IZERO, N
A( IOFF ) = ZERO
IOFF = IOFF + LDA
30 CONTINUE
ELSE
IOFF = IZERO
DO 40 I = 1, IZERO - 1
A( IOFF ) = ZERO
IOFF = IOFF + LDA
40 CONTINUE
IOFF = IOFF - IZERO
DO 50 I = IZERO, N
A( IOFF+I ) = ZERO
50 CONTINUE
END IF
ELSE
IZERO = 0
END IF
*
DO 60 IRHS = 1, NNS
NRHS = NSVAL( IRHS )
XTYPE = 'N'
*
* Form an exact solution and set the right hand side.
*
SRNAMT = 'DLARHS'
CALL DLARHS( PATH, XTYPE, UPLO, ' ', N, N, KL, KU,
$ NRHS, A, LDA, X, LDA, B, LDA,
$ ISEED, INFO )
*
* Compute the L*L' or U'*U factorization of the
* matrix and solve the system.
*
SRNAMT = 'DSPOSV '
KASE = KASE + 1
*
CALL DLACPY( 'All', N, N, A, LDA, AFAC, LDA)
*
CALL DSPOSV( UPLO, N, NRHS, AFAC, LDA, B, LDA, X, LDA,
$ WORK, SWORK, ITER, INFO )
IF (ITER.LT.0) THEN
CALL DLACPY( 'All', N, N, A, LDA, AFAC, LDA )
ENDIF
*
* Check error code from DSPOSV .
*
IF( INFO.NE.IZERO ) THEN
*
IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
$ CALL ALAHD( NOUT, PATH )
NERRS = NERRS + 1
*
IF( INFO.NE.IZERO .AND. IZERO.NE.0 ) THEN
WRITE( NOUT, FMT = 9988 )'DSPOSV',INFO,IZERO,N,
$ IMAT
ELSE
WRITE( NOUT, FMT = 9975 )'DSPOSV',INFO,N,IMAT
END IF
END IF
*
* Skip the remaining test if the matrix is singular.
*
IF( INFO.NE.0 )
$ GO TO 110
*
* Check the quality of the solution
*
CALL DLACPY( 'All', N, NRHS, B, LDA, WORK, LDA )
*
CALL DPOT06( UPLO, N, NRHS, A, LDA, X, LDA, WORK,
$ LDA, RWORK, RESULT( 1 ) )
*
* Check if the test passes the testing.
* Print information about the tests that did not
* pass the testing.
*
* If iterative refinement has been used and claimed to
* be successful (ITER>0), we want
* NORM1(B - A*X)/(NORM1(A)*NORM1(X)*EPS*SRQT(N)) < 1
*
* If double precision has been used (ITER<0), we want
* NORM1(B - A*X)/(NORM1(A)*NORM1(X)*EPS) < THRES
* (Cf. the linear solver testing routines)
*
IF ((THRESH.LE.0.0E+00)
$ .OR.((ITER.GE.0).AND.(N.GT.0)
$ .AND.(RESULT(1).GE.SQRT(DBLE(N))))
$ .OR.((ITER.LT.0).AND.(RESULT(1).GE.THRESH))) THEN
*
IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 ) THEN
WRITE( NOUT, FMT = 8999 )'DPO'
WRITE( NOUT, FMT = '( '' Matrix types:'' )' )
WRITE( NOUT, FMT = 8979 )
WRITE( NOUT, FMT = '( '' Test ratios:'' )' )
WRITE( NOUT, FMT = 8960 )1
WRITE( NOUT, FMT = '( '' Messages:'' )' )
END IF
*
WRITE( NOUT, FMT = 9998 )UPLO, N, NRHS, IMAT, 1,
$ RESULT( 1 )
*
NFAIL = NFAIL + 1
*
END IF
*
NRUN = NRUN + 1
*
60 CONTINUE
100 CONTINUE
110 CONTINUE
120 CONTINUE
*
* Print a summary of the results.
*
IF( NFAIL.GT.0 ) THEN
WRITE( NOUT, FMT = 9996 )'DSPOSV', NFAIL, NRUN
ELSE
WRITE( NOUT, FMT = 9995 )'DSPOSV', NRUN
END IF
IF( NERRS.GT.0 ) THEN
WRITE( NOUT, FMT = 9994 )NERRS
END IF
*
9998 FORMAT( ' UPLO=''', A1, ''', N =', I5, ', NRHS=', I3, ', type ',
$ I2, ', test(', I2, ') =', G12.5 )
9996 FORMAT( 1X, A6, ': ', I6, ' out of ', I6,
$ ' tests failed to pass the threshold' )
9995 FORMAT( /1X, 'All tests for ', A6,
$ ' routines passed the threshold ( ', I6, ' tests run)' )
9994 FORMAT( 6X, I6, ' error messages recorded' )
*
* SUBNAM, INFO, INFOE, N, IMAT
*
9988 FORMAT( ' *** ', A6, ' returned with INFO =', I5, ' instead of ',
$ I5, / ' ==> N =', I5, ', type ',
$ I2 )
*
* SUBNAM, INFO, N, IMAT
*
9975 FORMAT( ' *** Error code from ', A6, '=', I5, ' for M=', I5,
$ ', type ', I2 )
8999 FORMAT( / 1X, A3, ': positive definite dense matrices' )
8979 FORMAT( 4X, '1. Diagonal', 24X, '7. Last n/2 columns zero', / 4X,
$ '2. Upper triangular', 16X,
$ '8. Random, CNDNUM = sqrt(0.1/EPS)', / 4X,
$ '3. Lower triangular', 16X, '9. Random, CNDNUM = 0.1/EPS',
$ / 4X, '4. Random, CNDNUM = 2', 13X,
$ '10. Scaled near underflow', / 4X, '5. First column zero',
$ 14X, '11. Scaled near overflow', / 4X,
$ '6. Last column zero' )
8960 FORMAT( 3X, I2, ': norm_1( B - A * X ) / ',
$ '( norm_1(A) * norm_1(X) * EPS * SQRT(N) ) > 1 if ITERREF',
$ / 4x, 'or norm_1( B - A * X ) / ',
$ '( norm_1(A) * norm_1(X) * EPS ) > THRES if DPOTRF' )
RETURN
*
* End of DDRVAC
*
END