You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
416 lines
11 KiB
416 lines
11 KiB
2 years ago
|
*> \brief \b DORHR_COL01
|
||
|
*
|
||
|
* =========== DOCUMENTATION ===========
|
||
|
*
|
||
|
* Online html documentation available at
|
||
|
* http://www.netlib.org/lapack/explore-html/
|
||
|
*
|
||
|
* Definition:
|
||
|
* ===========
|
||
|
*
|
||
|
* SUBROUTINE DORHR_COL01( M, N, MB1, NB1, NB2, RESULT )
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
* INTEGER M, N, MB1, NB1, NB2
|
||
|
* .. Return values ..
|
||
|
* DOUBLE PRECISION RESULT(6)
|
||
|
*
|
||
|
*
|
||
|
*> \par Purpose:
|
||
|
* =============
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*> DORHR_COL01 tests DORGTSQR and DORHR_COL using DLATSQR, DGEMQRT.
|
||
|
*> Therefore, DLATSQR (part of DGEQR), DGEMQRT (part of DGEMQR)
|
||
|
*> have to be tested before this test.
|
||
|
*>
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Arguments:
|
||
|
* ==========
|
||
|
*
|
||
|
*> \param[in] M
|
||
|
*> \verbatim
|
||
|
*> M is INTEGER
|
||
|
*> Number of rows in test matrix.
|
||
|
*> \endverbatim
|
||
|
*> \param[in] N
|
||
|
*> \verbatim
|
||
|
*> N is INTEGER
|
||
|
*> Number of columns in test matrix.
|
||
|
*> \endverbatim
|
||
|
*> \param[in] MB1
|
||
|
*> \verbatim
|
||
|
*> MB1 is INTEGER
|
||
|
*> Number of row in row block in an input test matrix.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] NB1
|
||
|
*> \verbatim
|
||
|
*> NB1 is INTEGER
|
||
|
*> Number of columns in column block an input test matrix.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] NB2
|
||
|
*> \verbatim
|
||
|
*> NB2 is INTEGER
|
||
|
*> Number of columns in column block in an output test matrix.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] RESULT
|
||
|
*> \verbatim
|
||
|
*> RESULT is DOUBLE PRECISION array, dimension (6)
|
||
|
*> Results of each of the six tests below.
|
||
|
*>
|
||
|
*> A is a m-by-n test input matrix to be factored.
|
||
|
*> so that A = Q_gr * ( R )
|
||
|
*> ( 0 ),
|
||
|
*>
|
||
|
*> Q_qr is an implicit m-by-m orthogonal Q matrix, the result
|
||
|
*> of factorization in blocked WY-representation,
|
||
|
*> stored in ZGEQRT output format.
|
||
|
*>
|
||
|
*> R is a n-by-n upper-triangular matrix,
|
||
|
*>
|
||
|
*> 0 is a (m-n)-by-n zero matrix,
|
||
|
*>
|
||
|
*> Q is an explicit m-by-m orthogonal matrix Q = Q_gr * I
|
||
|
*>
|
||
|
*> C is an m-by-n random matrix,
|
||
|
*>
|
||
|
*> D is an n-by-m random matrix.
|
||
|
*>
|
||
|
*> The six tests are:
|
||
|
*>
|
||
|
*> RESULT(1) = |R - (Q**H) * A| / ( eps * m * |A| )
|
||
|
*> is equivalent to test for | A - Q * R | / (eps * m * |A|),
|
||
|
*>
|
||
|
*> RESULT(2) = |I - (Q**H) * Q| / ( eps * m ),
|
||
|
*>
|
||
|
*> RESULT(3) = | Q_qr * C - Q * C | / (eps * m * |C|),
|
||
|
*>
|
||
|
*> RESULT(4) = | (Q_gr**H) * C - (Q**H) * C | / (eps * m * |C|)
|
||
|
*>
|
||
|
*> RESULT(5) = | D * Q_qr - D * Q | / (eps * m * |D|)
|
||
|
*>
|
||
|
*> RESULT(6) = | D * (Q_qr**H) - D * (Q**H) | / (eps * m * |D|),
|
||
|
*>
|
||
|
*> where:
|
||
|
*> Q_qr * C, (Q_gr**H) * C, D * Q_qr, D * (Q_qr**H) are
|
||
|
*> computed using DGEMQRT,
|
||
|
*>
|
||
|
*> Q * C, (Q**H) * C, D * Q, D * (Q**H) are
|
||
|
*> computed using DGEMM.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Authors:
|
||
|
* ========
|
||
|
*
|
||
|
*> \author Univ. of Tennessee
|
||
|
*> \author Univ. of California Berkeley
|
||
|
*> \author Univ. of Colorado Denver
|
||
|
*> \author NAG Ltd.
|
||
|
*
|
||
|
*> \ingroup double_lin
|
||
|
*
|
||
|
* =====================================================================
|
||
|
SUBROUTINE DORHR_COL01( M, N, MB1, NB1, NB2, RESULT )
|
||
|
IMPLICIT NONE
|
||
|
*
|
||
|
* -- LAPACK test routine --
|
||
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
INTEGER M, N, MB1, NB1, NB2
|
||
|
* .. Return values ..
|
||
|
DOUBLE PRECISION RESULT(6)
|
||
|
*
|
||
|
* =====================================================================
|
||
|
*
|
||
|
* ..
|
||
|
* .. Local allocatable arrays
|
||
|
DOUBLE PRECISION, ALLOCATABLE :: A(:,:), AF(:,:), Q(:,:), R(:,:),
|
||
|
$ RWORK(:), WORK( : ), T1(:,:), T2(:,:), DIAG(:),
|
||
|
$ C(:,:), CF(:,:), D(:,:), DF(:,:)
|
||
|
*
|
||
|
* .. Parameters ..
|
||
|
DOUBLE PRECISION ONE, ZERO
|
||
|
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
|
||
|
* ..
|
||
|
* .. Local Scalars ..
|
||
|
LOGICAL TESTZEROS
|
||
|
INTEGER INFO, I, J, K, L, LWORK, NB1_UB, NB2_UB, NRB
|
||
|
DOUBLE PRECISION ANORM, EPS, RESID, CNORM, DNORM
|
||
|
* ..
|
||
|
* .. Local Arrays ..
|
||
|
INTEGER ISEED( 4 )
|
||
|
DOUBLE PRECISION WORKQUERY( 1 )
|
||
|
* ..
|
||
|
* .. External Functions ..
|
||
|
DOUBLE PRECISION DLAMCH, DLANGE, DLANSY
|
||
|
EXTERNAL DLAMCH, DLANGE, DLANSY
|
||
|
* ..
|
||
|
* .. External Subroutines ..
|
||
|
EXTERNAL DLACPY, DLARNV, DLASET, DLATSQR, DORHR_COL,
|
||
|
$ DORGTSQR, DSCAL, DGEMM, DGEMQRT, DSYRK
|
||
|
* ..
|
||
|
* .. Intrinsic Functions ..
|
||
|
INTRINSIC CEILING, DBLE, MAX, MIN
|
||
|
* ..
|
||
|
* .. Scalars in Common ..
|
||
|
CHARACTER(LEN=32) SRNAMT
|
||
|
* ..
|
||
|
* .. Common blocks ..
|
||
|
COMMON / SRMNAMC / SRNAMT
|
||
|
* ..
|
||
|
* .. Data statements ..
|
||
|
DATA ISEED / 1988, 1989, 1990, 1991 /
|
||
|
*
|
||
|
* TEST MATRICES WITH HALF OF MATRIX BEING ZEROS
|
||
|
*
|
||
|
TESTZEROS = .FALSE.
|
||
|
*
|
||
|
EPS = DLAMCH( 'Epsilon' )
|
||
|
K = MIN( M, N )
|
||
|
L = MAX( M, N, 1)
|
||
|
*
|
||
|
* Dynamically allocate local arrays
|
||
|
*
|
||
|
ALLOCATE ( A(M,N), AF(M,N), Q(L,L), R(M,L), RWORK(L),
|
||
|
$ C(M,N), CF(M,N),
|
||
|
$ D(N,M), DF(N,M) )
|
||
|
*
|
||
|
* Put random numbers into A and copy to AF
|
||
|
*
|
||
|
DO J = 1, N
|
||
|
CALL DLARNV( 2, ISEED, M, A( 1, J ) )
|
||
|
END DO
|
||
|
IF( TESTZEROS ) THEN
|
||
|
IF( M.GE.4 ) THEN
|
||
|
DO J = 1, N
|
||
|
CALL DLARNV( 2, ISEED, M/2, A( M/4, J ) )
|
||
|
END DO
|
||
|
END IF
|
||
|
END IF
|
||
|
CALL DLACPY( 'Full', M, N, A, M, AF, M )
|
||
|
*
|
||
|
* Number of row blocks in DLATSQR
|
||
|
*
|
||
|
NRB = MAX( 1, CEILING( DBLE( M - N ) / DBLE( MB1 - N ) ) )
|
||
|
*
|
||
|
ALLOCATE ( T1( NB1, N * NRB ) )
|
||
|
ALLOCATE ( T2( NB2, N ) )
|
||
|
ALLOCATE ( DIAG( N ) )
|
||
|
*
|
||
|
* Begin determine LWORK for the array WORK and allocate memory.
|
||
|
*
|
||
|
* DLATSQR requires NB1 to be bounded by N.
|
||
|
*
|
||
|
NB1_UB = MIN( NB1, N)
|
||
|
*
|
||
|
* DGEMQRT requires NB2 to be bounded by N.
|
||
|
*
|
||
|
NB2_UB = MIN( NB2, N)
|
||
|
*
|
||
|
CALL DLATSQR( M, N, MB1, NB1_UB, AF, M, T1, NB1,
|
||
|
$ WORKQUERY, -1, INFO )
|
||
|
LWORK = INT( WORKQUERY( 1 ) )
|
||
|
CALL DORGTSQR( M, N, MB1, NB1, AF, M, T1, NB1, WORKQUERY, -1,
|
||
|
$ INFO )
|
||
|
|
||
|
LWORK = MAX( LWORK, INT( WORKQUERY( 1 ) ) )
|
||
|
*
|
||
|
* In DGEMQRT, WORK is N*NB2_UB if SIDE = 'L',
|
||
|
* or M*NB2_UB if SIDE = 'R'.
|
||
|
*
|
||
|
LWORK = MAX( LWORK, NB2_UB * N, NB2_UB * M )
|
||
|
*
|
||
|
ALLOCATE ( WORK( LWORK ) )
|
||
|
*
|
||
|
* End allocate memory for WORK.
|
||
|
*
|
||
|
*
|
||
|
* Begin Householder reconstruction routines
|
||
|
*
|
||
|
* Factor the matrix A in the array AF.
|
||
|
*
|
||
|
SRNAMT = 'DLATSQR'
|
||
|
CALL DLATSQR( M, N, MB1, NB1_UB, AF, M, T1, NB1, WORK, LWORK,
|
||
|
$ INFO )
|
||
|
*
|
||
|
* Copy the factor R into the array R.
|
||
|
*
|
||
|
SRNAMT = 'DLACPY'
|
||
|
CALL DLACPY( 'U', N, N, AF, M, R, M )
|
||
|
*
|
||
|
* Reconstruct the orthogonal matrix Q.
|
||
|
*
|
||
|
SRNAMT = 'DORGTSQR'
|
||
|
CALL DORGTSQR( M, N, MB1, NB1, AF, M, T1, NB1, WORK, LWORK,
|
||
|
$ INFO )
|
||
|
*
|
||
|
* Perform the Householder reconstruction, the result is stored
|
||
|
* the arrays AF and T2.
|
||
|
*
|
||
|
SRNAMT = 'DORHR_COL'
|
||
|
CALL DORHR_COL( M, N, NB2, AF, M, T2, NB2, DIAG, INFO )
|
||
|
*
|
||
|
* Compute the factor R_hr corresponding to the Householder
|
||
|
* reconstructed Q_hr and place it in the upper triangle of AF to
|
||
|
* match the Q storage format in DGEQRT. R_hr = R_tsqr * S,
|
||
|
* this means changing the sign of I-th row of the matrix R_tsqr
|
||
|
* according to sign of of I-th diagonal element DIAG(I) of the
|
||
|
* matrix S.
|
||
|
*
|
||
|
SRNAMT = 'DLACPY'
|
||
|
CALL DLACPY( 'U', N, N, R, M, AF, M )
|
||
|
*
|
||
|
DO I = 1, N
|
||
|
IF( DIAG( I ).EQ.-ONE ) THEN
|
||
|
CALL DSCAL( N+1-I, -ONE, AF( I, I ), M )
|
||
|
END IF
|
||
|
END DO
|
||
|
*
|
||
|
* End Householder reconstruction routines.
|
||
|
*
|
||
|
*
|
||
|
* Generate the m-by-m matrix Q
|
||
|
*
|
||
|
CALL DLASET( 'Full', M, M, ZERO, ONE, Q, M )
|
||
|
*
|
||
|
SRNAMT = 'DGEMQRT'
|
||
|
CALL DGEMQRT( 'L', 'N', M, M, K, NB2_UB, AF, M, T2, NB2, Q, M,
|
||
|
$ WORK, INFO )
|
||
|
*
|
||
|
* Copy R
|
||
|
*
|
||
|
CALL DLASET( 'Full', M, N, ZERO, ZERO, R, M )
|
||
|
*
|
||
|
CALL DLACPY( 'Upper', M, N, AF, M, R, M )
|
||
|
*
|
||
|
* TEST 1
|
||
|
* Compute |R - (Q**T)*A| / ( eps * m * |A| ) and store in RESULT(1)
|
||
|
*
|
||
|
CALL DGEMM( 'T', 'N', M, N, M, -ONE, Q, M, A, M, ONE, R, M )
|
||
|
*
|
||
|
ANORM = DLANGE( '1', M, N, A, M, RWORK )
|
||
|
RESID = DLANGE( '1', M, N, R, M, RWORK )
|
||
|
IF( ANORM.GT.ZERO ) THEN
|
||
|
RESULT( 1 ) = RESID / ( EPS * MAX( 1, M ) * ANORM )
|
||
|
ELSE
|
||
|
RESULT( 1 ) = ZERO
|
||
|
END IF
|
||
|
*
|
||
|
* TEST 2
|
||
|
* Compute |I - (Q**T)*Q| / ( eps * m ) and store in RESULT(2)
|
||
|
*
|
||
|
CALL DLASET( 'Full', M, M, ZERO, ONE, R, M )
|
||
|
CALL DSYRK( 'U', 'T', M, M, -ONE, Q, M, ONE, R, M )
|
||
|
RESID = DLANSY( '1', 'Upper', M, R, M, RWORK )
|
||
|
RESULT( 2 ) = RESID / ( EPS * MAX( 1, M ) )
|
||
|
*
|
||
|
* Generate random m-by-n matrix C
|
||
|
*
|
||
|
DO J = 1, N
|
||
|
CALL DLARNV( 2, ISEED, M, C( 1, J ) )
|
||
|
END DO
|
||
|
CNORM = DLANGE( '1', M, N, C, M, RWORK )
|
||
|
CALL DLACPY( 'Full', M, N, C, M, CF, M )
|
||
|
*
|
||
|
* Apply Q to C as Q*C = CF
|
||
|
*
|
||
|
SRNAMT = 'DGEMQRT'
|
||
|
CALL DGEMQRT( 'L', 'N', M, N, K, NB2_UB, AF, M, T2, NB2, CF, M,
|
||
|
$ WORK, INFO )
|
||
|
*
|
||
|
* TEST 3
|
||
|
* Compute |CF - Q*C| / ( eps * m * |C| )
|
||
|
*
|
||
|
CALL DGEMM( 'N', 'N', M, N, M, -ONE, Q, M, C, M, ONE, CF, M )
|
||
|
RESID = DLANGE( '1', M, N, CF, M, RWORK )
|
||
|
IF( CNORM.GT.ZERO ) THEN
|
||
|
RESULT( 3 ) = RESID / ( EPS * MAX( 1, M ) * CNORM )
|
||
|
ELSE
|
||
|
RESULT( 3 ) = ZERO
|
||
|
END IF
|
||
|
*
|
||
|
* Copy C into CF again
|
||
|
*
|
||
|
CALL DLACPY( 'Full', M, N, C, M, CF, M )
|
||
|
*
|
||
|
* Apply Q to C as (Q**T)*C = CF
|
||
|
*
|
||
|
SRNAMT = 'DGEMQRT'
|
||
|
CALL DGEMQRT( 'L', 'T', M, N, K, NB2_UB, AF, M, T2, NB2, CF, M,
|
||
|
$ WORK, INFO )
|
||
|
*
|
||
|
* TEST 4
|
||
|
* Compute |CF - (Q**T)*C| / ( eps * m * |C|)
|
||
|
*
|
||
|
CALL DGEMM( 'T', 'N', M, N, M, -ONE, Q, M, C, M, ONE, CF, M )
|
||
|
RESID = DLANGE( '1', M, N, CF, M, RWORK )
|
||
|
IF( CNORM.GT.ZERO ) THEN
|
||
|
RESULT( 4 ) = RESID / ( EPS * MAX( 1, M ) * CNORM )
|
||
|
ELSE
|
||
|
RESULT( 4 ) = ZERO
|
||
|
END IF
|
||
|
*
|
||
|
* Generate random n-by-m matrix D and a copy DF
|
||
|
*
|
||
|
DO J = 1, M
|
||
|
CALL DLARNV( 2, ISEED, N, D( 1, J ) )
|
||
|
END DO
|
||
|
DNORM = DLANGE( '1', N, M, D, N, RWORK )
|
||
|
CALL DLACPY( 'Full', N, M, D, N, DF, N )
|
||
|
*
|
||
|
* Apply Q to D as D*Q = DF
|
||
|
*
|
||
|
SRNAMT = 'DGEMQRT'
|
||
|
CALL DGEMQRT( 'R', 'N', N, M, K, NB2_UB, AF, M, T2, NB2, DF, N,
|
||
|
$ WORK, INFO )
|
||
|
*
|
||
|
* TEST 5
|
||
|
* Compute |DF - D*Q| / ( eps * m * |D| )
|
||
|
*
|
||
|
CALL DGEMM( 'N', 'N', N, M, M, -ONE, D, N, Q, M, ONE, DF, N )
|
||
|
RESID = DLANGE( '1', N, M, DF, N, RWORK )
|
||
|
IF( DNORM.GT.ZERO ) THEN
|
||
|
RESULT( 5 ) = RESID / ( EPS * MAX( 1, M ) * DNORM )
|
||
|
ELSE
|
||
|
RESULT( 5 ) = ZERO
|
||
|
END IF
|
||
|
*
|
||
|
* Copy D into DF again
|
||
|
*
|
||
|
CALL DLACPY( 'Full', N, M, D, N, DF, N )
|
||
|
*
|
||
|
* Apply Q to D as D*QT = DF
|
||
|
*
|
||
|
SRNAMT = 'DGEMQRT'
|
||
|
CALL DGEMQRT( 'R', 'T', N, M, K, NB2_UB, AF, M, T2, NB2, DF, N,
|
||
|
$ WORK, INFO )
|
||
|
*
|
||
|
* TEST 6
|
||
|
* Compute |DF - D*(Q**T)| / ( eps * m * |D| )
|
||
|
*
|
||
|
CALL DGEMM( 'N', 'T', N, M, M, -ONE, D, N, Q, M, ONE, DF, N )
|
||
|
RESID = DLANGE( '1', N, M, DF, N, RWORK )
|
||
|
IF( DNORM.GT.ZERO ) THEN
|
||
|
RESULT( 6 ) = RESID / ( EPS * MAX( 1, M ) * DNORM )
|
||
|
ELSE
|
||
|
RESULT( 6 ) = ZERO
|
||
|
END IF
|
||
|
*
|
||
|
* Deallocate all arrays
|
||
|
*
|
||
|
DEALLOCATE ( A, AF, Q, R, RWORK, WORK, T1, T2, DIAG,
|
||
|
$ C, D, CF, DF )
|
||
|
*
|
||
|
RETURN
|
||
|
*
|
||
|
* End of DORHR_COL01
|
||
|
*
|
||
|
END
|