Cloned library LAPACK-3.11.0 with extra build files for internal package management.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

416 lines
11 KiB

2 years ago
*> \brief \b DORHR_COL01
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE DORHR_COL01( M, N, MB1, NB1, NB2, RESULT )
*
* .. Scalar Arguments ..
* INTEGER M, N, MB1, NB1, NB2
* .. Return values ..
* DOUBLE PRECISION RESULT(6)
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> DORHR_COL01 tests DORGTSQR and DORHR_COL using DLATSQR, DGEMQRT.
*> Therefore, DLATSQR (part of DGEQR), DGEMQRT (part of DGEMQR)
*> have to be tested before this test.
*>
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] M
*> \verbatim
*> M is INTEGER
*> Number of rows in test matrix.
*> \endverbatim
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> Number of columns in test matrix.
*> \endverbatim
*> \param[in] MB1
*> \verbatim
*> MB1 is INTEGER
*> Number of row in row block in an input test matrix.
*> \endverbatim
*>
*> \param[in] NB1
*> \verbatim
*> NB1 is INTEGER
*> Number of columns in column block an input test matrix.
*> \endverbatim
*>
*> \param[in] NB2
*> \verbatim
*> NB2 is INTEGER
*> Number of columns in column block in an output test matrix.
*> \endverbatim
*>
*> \param[out] RESULT
*> \verbatim
*> RESULT is DOUBLE PRECISION array, dimension (6)
*> Results of each of the six tests below.
*>
*> A is a m-by-n test input matrix to be factored.
*> so that A = Q_gr * ( R )
*> ( 0 ),
*>
*> Q_qr is an implicit m-by-m orthogonal Q matrix, the result
*> of factorization in blocked WY-representation,
*> stored in ZGEQRT output format.
*>
*> R is a n-by-n upper-triangular matrix,
*>
*> 0 is a (m-n)-by-n zero matrix,
*>
*> Q is an explicit m-by-m orthogonal matrix Q = Q_gr * I
*>
*> C is an m-by-n random matrix,
*>
*> D is an n-by-m random matrix.
*>
*> The six tests are:
*>
*> RESULT(1) = |R - (Q**H) * A| / ( eps * m * |A| )
*> is equivalent to test for | A - Q * R | / (eps * m * |A|),
*>
*> RESULT(2) = |I - (Q**H) * Q| / ( eps * m ),
*>
*> RESULT(3) = | Q_qr * C - Q * C | / (eps * m * |C|),
*>
*> RESULT(4) = | (Q_gr**H) * C - (Q**H) * C | / (eps * m * |C|)
*>
*> RESULT(5) = | D * Q_qr - D * Q | / (eps * m * |D|)
*>
*> RESULT(6) = | D * (Q_qr**H) - D * (Q**H) | / (eps * m * |D|),
*>
*> where:
*> Q_qr * C, (Q_gr**H) * C, D * Q_qr, D * (Q_qr**H) are
*> computed using DGEMQRT,
*>
*> Q * C, (Q**H) * C, D * Q, D * (Q**H) are
*> computed using DGEMM.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup double_lin
*
* =====================================================================
SUBROUTINE DORHR_COL01( M, N, MB1, NB1, NB2, RESULT )
IMPLICIT NONE
*
* -- LAPACK test routine --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
INTEGER M, N, MB1, NB1, NB2
* .. Return values ..
DOUBLE PRECISION RESULT(6)
*
* =====================================================================
*
* ..
* .. Local allocatable arrays
DOUBLE PRECISION, ALLOCATABLE :: A(:,:), AF(:,:), Q(:,:), R(:,:),
$ RWORK(:), WORK( : ), T1(:,:), T2(:,:), DIAG(:),
$ C(:,:), CF(:,:), D(:,:), DF(:,:)
*
* .. Parameters ..
DOUBLE PRECISION ONE, ZERO
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
* ..
* .. Local Scalars ..
LOGICAL TESTZEROS
INTEGER INFO, I, J, K, L, LWORK, NB1_UB, NB2_UB, NRB
DOUBLE PRECISION ANORM, EPS, RESID, CNORM, DNORM
* ..
* .. Local Arrays ..
INTEGER ISEED( 4 )
DOUBLE PRECISION WORKQUERY( 1 )
* ..
* .. External Functions ..
DOUBLE PRECISION DLAMCH, DLANGE, DLANSY
EXTERNAL DLAMCH, DLANGE, DLANSY
* ..
* .. External Subroutines ..
EXTERNAL DLACPY, DLARNV, DLASET, DLATSQR, DORHR_COL,
$ DORGTSQR, DSCAL, DGEMM, DGEMQRT, DSYRK
* ..
* .. Intrinsic Functions ..
INTRINSIC CEILING, DBLE, MAX, MIN
* ..
* .. Scalars in Common ..
CHARACTER(LEN=32) SRNAMT
* ..
* .. Common blocks ..
COMMON / SRMNAMC / SRNAMT
* ..
* .. Data statements ..
DATA ISEED / 1988, 1989, 1990, 1991 /
*
* TEST MATRICES WITH HALF OF MATRIX BEING ZEROS
*
TESTZEROS = .FALSE.
*
EPS = DLAMCH( 'Epsilon' )
K = MIN( M, N )
L = MAX( M, N, 1)
*
* Dynamically allocate local arrays
*
ALLOCATE ( A(M,N), AF(M,N), Q(L,L), R(M,L), RWORK(L),
$ C(M,N), CF(M,N),
$ D(N,M), DF(N,M) )
*
* Put random numbers into A and copy to AF
*
DO J = 1, N
CALL DLARNV( 2, ISEED, M, A( 1, J ) )
END DO
IF( TESTZEROS ) THEN
IF( M.GE.4 ) THEN
DO J = 1, N
CALL DLARNV( 2, ISEED, M/2, A( M/4, J ) )
END DO
END IF
END IF
CALL DLACPY( 'Full', M, N, A, M, AF, M )
*
* Number of row blocks in DLATSQR
*
NRB = MAX( 1, CEILING( DBLE( M - N ) / DBLE( MB1 - N ) ) )
*
ALLOCATE ( T1( NB1, N * NRB ) )
ALLOCATE ( T2( NB2, N ) )
ALLOCATE ( DIAG( N ) )
*
* Begin determine LWORK for the array WORK and allocate memory.
*
* DLATSQR requires NB1 to be bounded by N.
*
NB1_UB = MIN( NB1, N)
*
* DGEMQRT requires NB2 to be bounded by N.
*
NB2_UB = MIN( NB2, N)
*
CALL DLATSQR( M, N, MB1, NB1_UB, AF, M, T1, NB1,
$ WORKQUERY, -1, INFO )
LWORK = INT( WORKQUERY( 1 ) )
CALL DORGTSQR( M, N, MB1, NB1, AF, M, T1, NB1, WORKQUERY, -1,
$ INFO )
LWORK = MAX( LWORK, INT( WORKQUERY( 1 ) ) )
*
* In DGEMQRT, WORK is N*NB2_UB if SIDE = 'L',
* or M*NB2_UB if SIDE = 'R'.
*
LWORK = MAX( LWORK, NB2_UB * N, NB2_UB * M )
*
ALLOCATE ( WORK( LWORK ) )
*
* End allocate memory for WORK.
*
*
* Begin Householder reconstruction routines
*
* Factor the matrix A in the array AF.
*
SRNAMT = 'DLATSQR'
CALL DLATSQR( M, N, MB1, NB1_UB, AF, M, T1, NB1, WORK, LWORK,
$ INFO )
*
* Copy the factor R into the array R.
*
SRNAMT = 'DLACPY'
CALL DLACPY( 'U', N, N, AF, M, R, M )
*
* Reconstruct the orthogonal matrix Q.
*
SRNAMT = 'DORGTSQR'
CALL DORGTSQR( M, N, MB1, NB1, AF, M, T1, NB1, WORK, LWORK,
$ INFO )
*
* Perform the Householder reconstruction, the result is stored
* the arrays AF and T2.
*
SRNAMT = 'DORHR_COL'
CALL DORHR_COL( M, N, NB2, AF, M, T2, NB2, DIAG, INFO )
*
* Compute the factor R_hr corresponding to the Householder
* reconstructed Q_hr and place it in the upper triangle of AF to
* match the Q storage format in DGEQRT. R_hr = R_tsqr * S,
* this means changing the sign of I-th row of the matrix R_tsqr
* according to sign of of I-th diagonal element DIAG(I) of the
* matrix S.
*
SRNAMT = 'DLACPY'
CALL DLACPY( 'U', N, N, R, M, AF, M )
*
DO I = 1, N
IF( DIAG( I ).EQ.-ONE ) THEN
CALL DSCAL( N+1-I, -ONE, AF( I, I ), M )
END IF
END DO
*
* End Householder reconstruction routines.
*
*
* Generate the m-by-m matrix Q
*
CALL DLASET( 'Full', M, M, ZERO, ONE, Q, M )
*
SRNAMT = 'DGEMQRT'
CALL DGEMQRT( 'L', 'N', M, M, K, NB2_UB, AF, M, T2, NB2, Q, M,
$ WORK, INFO )
*
* Copy R
*
CALL DLASET( 'Full', M, N, ZERO, ZERO, R, M )
*
CALL DLACPY( 'Upper', M, N, AF, M, R, M )
*
* TEST 1
* Compute |R - (Q**T)*A| / ( eps * m * |A| ) and store in RESULT(1)
*
CALL DGEMM( 'T', 'N', M, N, M, -ONE, Q, M, A, M, ONE, R, M )
*
ANORM = DLANGE( '1', M, N, A, M, RWORK )
RESID = DLANGE( '1', M, N, R, M, RWORK )
IF( ANORM.GT.ZERO ) THEN
RESULT( 1 ) = RESID / ( EPS * MAX( 1, M ) * ANORM )
ELSE
RESULT( 1 ) = ZERO
END IF
*
* TEST 2
* Compute |I - (Q**T)*Q| / ( eps * m ) and store in RESULT(2)
*
CALL DLASET( 'Full', M, M, ZERO, ONE, R, M )
CALL DSYRK( 'U', 'T', M, M, -ONE, Q, M, ONE, R, M )
RESID = DLANSY( '1', 'Upper', M, R, M, RWORK )
RESULT( 2 ) = RESID / ( EPS * MAX( 1, M ) )
*
* Generate random m-by-n matrix C
*
DO J = 1, N
CALL DLARNV( 2, ISEED, M, C( 1, J ) )
END DO
CNORM = DLANGE( '1', M, N, C, M, RWORK )
CALL DLACPY( 'Full', M, N, C, M, CF, M )
*
* Apply Q to C as Q*C = CF
*
SRNAMT = 'DGEMQRT'
CALL DGEMQRT( 'L', 'N', M, N, K, NB2_UB, AF, M, T2, NB2, CF, M,
$ WORK, INFO )
*
* TEST 3
* Compute |CF - Q*C| / ( eps * m * |C| )
*
CALL DGEMM( 'N', 'N', M, N, M, -ONE, Q, M, C, M, ONE, CF, M )
RESID = DLANGE( '1', M, N, CF, M, RWORK )
IF( CNORM.GT.ZERO ) THEN
RESULT( 3 ) = RESID / ( EPS * MAX( 1, M ) * CNORM )
ELSE
RESULT( 3 ) = ZERO
END IF
*
* Copy C into CF again
*
CALL DLACPY( 'Full', M, N, C, M, CF, M )
*
* Apply Q to C as (Q**T)*C = CF
*
SRNAMT = 'DGEMQRT'
CALL DGEMQRT( 'L', 'T', M, N, K, NB2_UB, AF, M, T2, NB2, CF, M,
$ WORK, INFO )
*
* TEST 4
* Compute |CF - (Q**T)*C| / ( eps * m * |C|)
*
CALL DGEMM( 'T', 'N', M, N, M, -ONE, Q, M, C, M, ONE, CF, M )
RESID = DLANGE( '1', M, N, CF, M, RWORK )
IF( CNORM.GT.ZERO ) THEN
RESULT( 4 ) = RESID / ( EPS * MAX( 1, M ) * CNORM )
ELSE
RESULT( 4 ) = ZERO
END IF
*
* Generate random n-by-m matrix D and a copy DF
*
DO J = 1, M
CALL DLARNV( 2, ISEED, N, D( 1, J ) )
END DO
DNORM = DLANGE( '1', N, M, D, N, RWORK )
CALL DLACPY( 'Full', N, M, D, N, DF, N )
*
* Apply Q to D as D*Q = DF
*
SRNAMT = 'DGEMQRT'
CALL DGEMQRT( 'R', 'N', N, M, K, NB2_UB, AF, M, T2, NB2, DF, N,
$ WORK, INFO )
*
* TEST 5
* Compute |DF - D*Q| / ( eps * m * |D| )
*
CALL DGEMM( 'N', 'N', N, M, M, -ONE, D, N, Q, M, ONE, DF, N )
RESID = DLANGE( '1', N, M, DF, N, RWORK )
IF( DNORM.GT.ZERO ) THEN
RESULT( 5 ) = RESID / ( EPS * MAX( 1, M ) * DNORM )
ELSE
RESULT( 5 ) = ZERO
END IF
*
* Copy D into DF again
*
CALL DLACPY( 'Full', N, M, D, N, DF, N )
*
* Apply Q to D as D*QT = DF
*
SRNAMT = 'DGEMQRT'
CALL DGEMQRT( 'R', 'T', N, M, K, NB2_UB, AF, M, T2, NB2, DF, N,
$ WORK, INFO )
*
* TEST 6
* Compute |DF - D*(Q**T)| / ( eps * m * |D| )
*
CALL DGEMM( 'N', 'T', N, M, M, -ONE, D, N, Q, M, ONE, DF, N )
RESID = DLANGE( '1', N, M, DF, N, RWORK )
IF( DNORM.GT.ZERO ) THEN
RESULT( 6 ) = RESID / ( EPS * MAX( 1, M ) * DNORM )
ELSE
RESULT( 6 ) = ZERO
END IF
*
* Deallocate all arrays
*
DEALLOCATE ( A, AF, Q, R, RWORK, WORK, T1, T2, DIAG,
$ C, D, CF, DF )
*
RETURN
*
* End of DORHR_COL01
*
END