You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
219 lines
5.8 KiB
219 lines
5.8 KiB
2 years ago
|
*> \brief \b DPOT03
|
||
|
*
|
||
|
* =========== DOCUMENTATION ===========
|
||
|
*
|
||
|
* Online html documentation available at
|
||
|
* http://www.netlib.org/lapack/explore-html/
|
||
|
*
|
||
|
* Definition:
|
||
|
* ===========
|
||
|
*
|
||
|
* SUBROUTINE DPOT03( UPLO, N, A, LDA, AINV, LDAINV, WORK, LDWORK,
|
||
|
* RWORK, RCOND, RESID )
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
* CHARACTER UPLO
|
||
|
* INTEGER LDA, LDAINV, LDWORK, N
|
||
|
* DOUBLE PRECISION RCOND, RESID
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
* DOUBLE PRECISION A( LDA, * ), AINV( LDAINV, * ), RWORK( * ),
|
||
|
* $ WORK( LDWORK, * )
|
||
|
* ..
|
||
|
*
|
||
|
*
|
||
|
*> \par Purpose:
|
||
|
* =============
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*> DPOT03 computes the residual for a symmetric matrix times its
|
||
|
*> inverse:
|
||
|
*> norm( I - A*AINV ) / ( N * norm(A) * norm(AINV) * EPS ),
|
||
|
*> where EPS is the machine epsilon.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Arguments:
|
||
|
* ==========
|
||
|
*
|
||
|
*> \param[in] UPLO
|
||
|
*> \verbatim
|
||
|
*> UPLO is CHARACTER*1
|
||
|
*> Specifies whether the upper or lower triangular part of the
|
||
|
*> symmetric matrix A is stored:
|
||
|
*> = 'U': Upper triangular
|
||
|
*> = 'L': Lower triangular
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] N
|
||
|
*> \verbatim
|
||
|
*> N is INTEGER
|
||
|
*> The number of rows and columns of the matrix A. N >= 0.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] A
|
||
|
*> \verbatim
|
||
|
*> A is DOUBLE PRECISION array, dimension (LDA,N)
|
||
|
*> The original symmetric matrix A.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDA
|
||
|
*> \verbatim
|
||
|
*> LDA is INTEGER
|
||
|
*> The leading dimension of the array A. LDA >= max(1,N)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] AINV
|
||
|
*> \verbatim
|
||
|
*> AINV is DOUBLE PRECISION array, dimension (LDAINV,N)
|
||
|
*> On entry, the inverse of the matrix A, stored as a symmetric
|
||
|
*> matrix in the same format as A.
|
||
|
*> In this version, AINV is expanded into a full matrix and
|
||
|
*> multiplied by A, so the opposing triangle of AINV will be
|
||
|
*> changed; i.e., if the upper triangular part of AINV is
|
||
|
*> stored, the lower triangular part will be used as work space.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDAINV
|
||
|
*> \verbatim
|
||
|
*> LDAINV is INTEGER
|
||
|
*> The leading dimension of the array AINV. LDAINV >= max(1,N).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] WORK
|
||
|
*> \verbatim
|
||
|
*> WORK is DOUBLE PRECISION array, dimension (LDWORK,N)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDWORK
|
||
|
*> \verbatim
|
||
|
*> LDWORK is INTEGER
|
||
|
*> The leading dimension of the array WORK. LDWORK >= max(1,N).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] RWORK
|
||
|
*> \verbatim
|
||
|
*> RWORK is DOUBLE PRECISION array, dimension (N)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] RCOND
|
||
|
*> \verbatim
|
||
|
*> RCOND is DOUBLE PRECISION
|
||
|
*> The reciprocal of the condition number of A, computed as
|
||
|
*> ( 1/norm(A) ) / norm(AINV).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] RESID
|
||
|
*> \verbatim
|
||
|
*> RESID is DOUBLE PRECISION
|
||
|
*> norm(I - A*AINV) / ( N * norm(A) * norm(AINV) * EPS )
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Authors:
|
||
|
* ========
|
||
|
*
|
||
|
*> \author Univ. of Tennessee
|
||
|
*> \author Univ. of California Berkeley
|
||
|
*> \author Univ. of Colorado Denver
|
||
|
*> \author NAG Ltd.
|
||
|
*
|
||
|
*> \ingroup double_lin
|
||
|
*
|
||
|
* =====================================================================
|
||
|
SUBROUTINE DPOT03( UPLO, N, A, LDA, AINV, LDAINV, WORK, LDWORK,
|
||
|
$ RWORK, RCOND, RESID )
|
||
|
*
|
||
|
* -- LAPACK test routine --
|
||
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
CHARACTER UPLO
|
||
|
INTEGER LDA, LDAINV, LDWORK, N
|
||
|
DOUBLE PRECISION RCOND, RESID
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
DOUBLE PRECISION A( LDA, * ), AINV( LDAINV, * ), RWORK( * ),
|
||
|
$ WORK( LDWORK, * )
|
||
|
* ..
|
||
|
*
|
||
|
* =====================================================================
|
||
|
*
|
||
|
* .. Parameters ..
|
||
|
DOUBLE PRECISION ZERO, ONE
|
||
|
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
|
||
|
* ..
|
||
|
* .. Local Scalars ..
|
||
|
INTEGER I, J
|
||
|
DOUBLE PRECISION AINVNM, ANORM, EPS
|
||
|
* ..
|
||
|
* .. External Functions ..
|
||
|
LOGICAL LSAME
|
||
|
DOUBLE PRECISION DLAMCH, DLANGE, DLANSY
|
||
|
EXTERNAL LSAME, DLAMCH, DLANGE, DLANSY
|
||
|
* ..
|
||
|
* .. External Subroutines ..
|
||
|
EXTERNAL DSYMM
|
||
|
* ..
|
||
|
* .. Intrinsic Functions ..
|
||
|
INTRINSIC DBLE
|
||
|
* ..
|
||
|
* .. Executable Statements ..
|
||
|
*
|
||
|
* Quick exit if N = 0.
|
||
|
*
|
||
|
IF( N.LE.0 ) THEN
|
||
|
RCOND = ONE
|
||
|
RESID = ZERO
|
||
|
RETURN
|
||
|
END IF
|
||
|
*
|
||
|
* Exit with RESID = 1/EPS if ANORM = 0 or AINVNM = 0.
|
||
|
*
|
||
|
EPS = DLAMCH( 'Epsilon' )
|
||
|
ANORM = DLANSY( '1', UPLO, N, A, LDA, RWORK )
|
||
|
AINVNM = DLANSY( '1', UPLO, N, AINV, LDAINV, RWORK )
|
||
|
IF( ANORM.LE.ZERO .OR. AINVNM.LE.ZERO ) THEN
|
||
|
RCOND = ZERO
|
||
|
RESID = ONE / EPS
|
||
|
RETURN
|
||
|
END IF
|
||
|
RCOND = ( ONE / ANORM ) / AINVNM
|
||
|
*
|
||
|
* Expand AINV into a full matrix and call DSYMM to multiply
|
||
|
* AINV on the left by A.
|
||
|
*
|
||
|
IF( LSAME( UPLO, 'U' ) ) THEN
|
||
|
DO 20 J = 1, N
|
||
|
DO 10 I = 1, J - 1
|
||
|
AINV( J, I ) = AINV( I, J )
|
||
|
10 CONTINUE
|
||
|
20 CONTINUE
|
||
|
ELSE
|
||
|
DO 40 J = 1, N
|
||
|
DO 30 I = J + 1, N
|
||
|
AINV( J, I ) = AINV( I, J )
|
||
|
30 CONTINUE
|
||
|
40 CONTINUE
|
||
|
END IF
|
||
|
CALL DSYMM( 'Left', UPLO, N, N, -ONE, A, LDA, AINV, LDAINV, ZERO,
|
||
|
$ WORK, LDWORK )
|
||
|
*
|
||
|
* Add the identity matrix to WORK .
|
||
|
*
|
||
|
DO 50 I = 1, N
|
||
|
WORK( I, I ) = WORK( I, I ) + ONE
|
||
|
50 CONTINUE
|
||
|
*
|
||
|
* Compute norm(I - A*AINV) / (N * norm(A) * norm(AINV) * EPS)
|
||
|
*
|
||
|
RESID = DLANGE( '1', N, N, WORK, LDWORK, RWORK )
|
||
|
*
|
||
|
RESID = ( ( RESID*RCOND ) / EPS ) / DBLE( N )
|
||
|
*
|
||
|
RETURN
|
||
|
*
|
||
|
* End of DPOT03
|
||
|
*
|
||
|
END
|