You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
266 lines
7.0 KiB
266 lines
7.0 KiB
2 years ago
|
*> \brief \b SGBT02
|
||
|
*
|
||
|
* =========== DOCUMENTATION ===========
|
||
|
*
|
||
|
* Online html documentation available at
|
||
|
* http://www.netlib.org/lapack/explore-html/
|
||
|
*
|
||
|
* Definition:
|
||
|
* ===========
|
||
|
*
|
||
|
* SUBROUTINE SGBT02( TRANS, M, N, KL, KU, NRHS, A, LDA, X, LDX, B,
|
||
|
* LDB, RWORK, RESID )
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
* CHARACTER TRANS
|
||
|
* INTEGER KL, KU, LDA, LDB, LDX, M, N, NRHS
|
||
|
* REAL RESID
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
* REAL A( LDA, * ), B( LDB, * ), X( LDX, * ),
|
||
|
* RWORK( * )
|
||
|
* ..
|
||
|
*
|
||
|
*
|
||
|
*> \par Purpose:
|
||
|
* =============
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*> SGBT02 computes the residual for a solution of a banded system of
|
||
|
*> equations op(A)*X = B:
|
||
|
*> RESID = norm(B - op(A)*X) / ( norm(op(A)) * norm(X) * EPS ),
|
||
|
*> where op(A) = A or A**T, depending on TRANS, and EPS is the
|
||
|
*> machine epsilon.
|
||
|
*> The norm used is the 1-norm.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Arguments:
|
||
|
* ==========
|
||
|
*
|
||
|
*> \param[in] TRANS
|
||
|
*> \verbatim
|
||
|
*> TRANS is CHARACTER*1
|
||
|
*> Specifies the form of the system of equations:
|
||
|
*> = 'N': A * X = B (No transpose)
|
||
|
*> = 'T': A**T * X = B (Transpose)
|
||
|
*> = 'C': A**H * X = B (Conjugate transpose = Transpose)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] M
|
||
|
*> \verbatim
|
||
|
*> M is INTEGER
|
||
|
*> The number of rows of the matrix A. M >= 0.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] N
|
||
|
*> \verbatim
|
||
|
*> N is INTEGER
|
||
|
*> The number of columns of the matrix A. N >= 0.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] KL
|
||
|
*> \verbatim
|
||
|
*> KL is INTEGER
|
||
|
*> The number of subdiagonals within the band of A. KL >= 0.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] KU
|
||
|
*> \verbatim
|
||
|
*> KU is INTEGER
|
||
|
*> The number of superdiagonals within the band of A. KU >= 0.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] NRHS
|
||
|
*> \verbatim
|
||
|
*> NRHS is INTEGER
|
||
|
*> The number of columns of B. NRHS >= 0.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] A
|
||
|
*> \verbatim
|
||
|
*> A is REAL array, dimension (LDA,N)
|
||
|
*> The original matrix A in band storage, stored in rows 1 to
|
||
|
*> KL+KU+1.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDA
|
||
|
*> \verbatim
|
||
|
*> LDA is INTEGER
|
||
|
*> The leading dimension of the array A. LDA >= max(1,KL+KU+1).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] X
|
||
|
*> \verbatim
|
||
|
*> X is REAL array, dimension (LDX,NRHS)
|
||
|
*> The computed solution vectors for the system of linear
|
||
|
*> equations.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDX
|
||
|
*> \verbatim
|
||
|
*> LDX is INTEGER
|
||
|
*> The leading dimension of the array X. If TRANS = 'N',
|
||
|
*> LDX >= max(1,N); if TRANS = 'T' or 'C', LDX >= max(1,M).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in,out] B
|
||
|
*> \verbatim
|
||
|
*> B is REAL array, dimension (LDB,NRHS)
|
||
|
*> On entry, the right hand side vectors for the system of
|
||
|
*> linear equations.
|
||
|
*> On exit, B is overwritten with the difference B - A*X.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] LDB
|
||
|
*> \verbatim
|
||
|
*> LDB is INTEGER
|
||
|
*> The leading dimension of the array B. IF TRANS = 'N',
|
||
|
*> LDB >= max(1,M); if TRANS = 'T' or 'C', LDB >= max(1,N).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] RWORK
|
||
|
*> \verbatim
|
||
|
*> RWORK is REAL array, dimension (MAX(1,LRWORK)),
|
||
|
*> where LRWORK >= M when TRANS = 'T' or 'C'; otherwise, RWORK
|
||
|
*> is not referenced.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
*> \param[out] RESID
|
||
|
*> \verbatim
|
||
|
*> RESID is REAL
|
||
|
*> The maximum over the number of right hand sides of
|
||
|
*> norm(B - op(A)*X) / ( norm(op(A)) * norm(X) * EPS ).
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Authors:
|
||
|
* ========
|
||
|
*
|
||
|
*> \author Univ. of Tennessee
|
||
|
*> \author Univ. of California Berkeley
|
||
|
*> \author Univ. of Colorado Denver
|
||
|
*> \author NAG Ltd.
|
||
|
*
|
||
|
*> \ingroup single_lin
|
||
|
*
|
||
|
* =====================================================================
|
||
|
SUBROUTINE SGBT02( TRANS, M, N, KL, KU, NRHS, A, LDA, X, LDX, B,
|
||
|
$ LDB, RWORK, RESID )
|
||
|
*
|
||
|
* -- LAPACK test routine --
|
||
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
CHARACTER TRANS
|
||
|
INTEGER KL, KU, LDA, LDB, LDX, M, N, NRHS
|
||
|
REAL RESID
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
REAL A( LDA, * ), B( LDB, * ), X( LDX, * ),
|
||
|
$ RWORK( * )
|
||
|
* ..
|
||
|
*
|
||
|
* =====================================================================
|
||
|
*
|
||
|
* .. Parameters ..
|
||
|
REAL ZERO, ONE
|
||
|
PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
|
||
|
* ..
|
||
|
* .. Local Scalars ..
|
||
|
INTEGER I1, I2, J, KD, N1
|
||
|
REAL ANORM, BNORM, EPS, TEMP, XNORM
|
||
|
* ..
|
||
|
* .. External Functions ..
|
||
|
LOGICAL LSAME, SISNAN
|
||
|
REAL SASUM, SLAMCH
|
||
|
EXTERNAL LSAME, SASUM, SISNAN, SLAMCH
|
||
|
* ..
|
||
|
* .. External Subroutines ..
|
||
|
EXTERNAL SGBMV
|
||
|
* ..
|
||
|
* .. Intrinsic Functions ..
|
||
|
INTRINSIC ABS, MAX, MIN
|
||
|
* ..
|
||
|
* .. Executable Statements ..
|
||
|
*
|
||
|
* Quick return if N = 0 pr NRHS = 0
|
||
|
*
|
||
|
IF( M.LE.0 .OR. N.LE.0 .OR. NRHS.LE.0 ) THEN
|
||
|
RESID = ZERO
|
||
|
RETURN
|
||
|
END IF
|
||
|
*
|
||
|
* Exit with RESID = 1/EPS if ANORM = 0.
|
||
|
*
|
||
|
EPS = SLAMCH( 'Epsilon' )
|
||
|
ANORM = ZERO
|
||
|
IF( LSAME( TRANS, 'N' ) ) THEN
|
||
|
*
|
||
|
* Find norm1(A).
|
||
|
*
|
||
|
KD = KU + 1
|
||
|
DO 10 J = 1, N
|
||
|
I1 = MAX( KD+1-J, 1 )
|
||
|
I2 = MIN( KD+M-J, KL+KD )
|
||
|
IF( I2.GE.I1 ) THEN
|
||
|
TEMP = SASUM( I2-I1+1, A( I1, J ), 1 )
|
||
|
IF( ANORM.LT.TEMP .OR. SISNAN( TEMP ) ) ANORM = TEMP
|
||
|
END IF
|
||
|
10 CONTINUE
|
||
|
ELSE
|
||
|
*
|
||
|
* Find normI(A).
|
||
|
*
|
||
|
DO 12 I1 = 1, M
|
||
|
RWORK( I1 ) = ZERO
|
||
|
12 CONTINUE
|
||
|
DO 16 J = 1, N
|
||
|
KD = KU + 1 - J
|
||
|
DO 14 I1 = MAX( 1, J-KU ), MIN( M, J+KL )
|
||
|
RWORK( I1 ) = RWORK( I1 ) + ABS( A( KD+I1, J ) )
|
||
|
14 CONTINUE
|
||
|
16 CONTINUE
|
||
|
DO 18 I1 = 1, M
|
||
|
TEMP = RWORK( I1 )
|
||
|
IF( ANORM.LT.TEMP .OR. SISNAN( TEMP ) ) ANORM = TEMP
|
||
|
18 CONTINUE
|
||
|
END IF
|
||
|
IF( ANORM.LE.ZERO ) THEN
|
||
|
RESID = ONE / EPS
|
||
|
RETURN
|
||
|
END IF
|
||
|
*
|
||
|
IF( LSAME( TRANS, 'T' ) .OR. LSAME( TRANS, 'C' ) ) THEN
|
||
|
N1 = N
|
||
|
ELSE
|
||
|
N1 = M
|
||
|
END IF
|
||
|
*
|
||
|
* Compute B - op(A)*X
|
||
|
*
|
||
|
DO 20 J = 1, NRHS
|
||
|
CALL SGBMV( TRANS, M, N, KL, KU, -ONE, A, LDA, X( 1, J ), 1,
|
||
|
$ ONE, B( 1, J ), 1 )
|
||
|
20 CONTINUE
|
||
|
*
|
||
|
* Compute the maximum over the number of right hand sides of
|
||
|
* norm(B - op(A)*X) / ( norm(op(A)) * norm(X) * EPS ).
|
||
|
*
|
||
|
RESID = ZERO
|
||
|
DO 30 J = 1, NRHS
|
||
|
BNORM = SASUM( N1, B( 1, J ), 1 )
|
||
|
XNORM = SASUM( N1, X( 1, J ), 1 )
|
||
|
IF( XNORM.LE.ZERO ) THEN
|
||
|
RESID = ONE / EPS
|
||
|
ELSE
|
||
|
RESID = MAX( RESID, ( ( BNORM / ANORM ) / XNORM ) / EPS )
|
||
|
END IF
|
||
|
30 CONTINUE
|
||
|
*
|
||
|
RETURN
|
||
|
*
|
||
|
* End of SGBT02
|
||
|
*
|
||
|
END
|