You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
716 lines
25 KiB
716 lines
25 KiB
2 years ago
|
*> \brief \b ZDRVGE
|
||
|
*
|
||
|
* =========== DOCUMENTATION ===========
|
||
|
*
|
||
|
* Online html documentation available at
|
||
|
* http://www.netlib.org/lapack/explore-html/
|
||
|
*
|
||
|
* Definition:
|
||
|
* ===========
|
||
|
*
|
||
|
* SUBROUTINE ZDRVGE( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, NMAX,
|
||
|
* A, AFAC, ASAV, B, BSAV, X, XACT, S, WORK,
|
||
|
* RWORK, IWORK, NOUT )
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
* LOGICAL TSTERR
|
||
|
* INTEGER NMAX, NN, NOUT, NRHS
|
||
|
* DOUBLE PRECISION THRESH
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
* LOGICAL DOTYPE( * )
|
||
|
* INTEGER IWORK( * ), NVAL( * )
|
||
|
* DOUBLE PRECISION RWORK( * ), S( * )
|
||
|
* COMPLEX*16 A( * ), AFAC( * ), ASAV( * ), B( * ),
|
||
|
* $ BSAV( * ), WORK( * ), X( * ), XACT( * )
|
||
|
* ..
|
||
|
*
|
||
|
*
|
||
|
*> \par Purpose:
|
||
|
* =============
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*> ZDRVGE tests the driver routines ZGESV and -SVX.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Arguments:
|
||
|
* ==========
|
||
|
*
|
||
|
*> \param[in] DOTYPE
|
||
|
*> \verbatim
|
||
|
*> DOTYPE is LOGICAL array, dimension (NTYPES)
|
||
|
*> The matrix types to be used for testing. Matrices of type j
|
||
|
*> (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
|
||
|
*> .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] NN
|
||
|
*> \verbatim
|
||
|
*> NN is INTEGER
|
||
|
*> The number of values of N contained in the vector NVAL.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] NVAL
|
||
|
*> \verbatim
|
||
|
*> NVAL is INTEGER array, dimension (NN)
|
||
|
*> The values of the matrix column dimension N.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] NRHS
|
||
|
*> \verbatim
|
||
|
*> NRHS is INTEGER
|
||
|
*> The number of right hand side vectors to be generated for
|
||
|
*> each linear system.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] THRESH
|
||
|
*> \verbatim
|
||
|
*> THRESH is DOUBLE PRECISION
|
||
|
*> The threshold value for the test ratios. A result is
|
||
|
*> included in the output file if RESULT >= THRESH. To have
|
||
|
*> every test ratio printed, use THRESH = 0.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] TSTERR
|
||
|
*> \verbatim
|
||
|
*> TSTERR is LOGICAL
|
||
|
*> Flag that indicates whether error exits are to be tested.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] NMAX
|
||
|
*> \verbatim
|
||
|
*> NMAX is INTEGER
|
||
|
*> The maximum value permitted for N, used in dimensioning the
|
||
|
*> work arrays.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] A
|
||
|
*> \verbatim
|
||
|
*> A is COMPLEX*16 array, dimension (NMAX*NMAX)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] AFAC
|
||
|
*> \verbatim
|
||
|
*> AFAC is COMPLEX*16 array, dimension (NMAX*NMAX)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] ASAV
|
||
|
*> \verbatim
|
||
|
*> ASAV is COMPLEX*16 array, dimension (NMAX*NMAX)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] B
|
||
|
*> \verbatim
|
||
|
*> B is COMPLEX*16 array, dimension (NMAX*NRHS)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] BSAV
|
||
|
*> \verbatim
|
||
|
*> BSAV is COMPLEX*16 array, dimension (NMAX*NRHS)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] X
|
||
|
*> \verbatim
|
||
|
*> X is COMPLEX*16 array, dimension (NMAX*NRHS)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] XACT
|
||
|
*> \verbatim
|
||
|
*> XACT is COMPLEX*16 array, dimension (NMAX*NRHS)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] S
|
||
|
*> \verbatim
|
||
|
*> S is DOUBLE PRECISION array, dimension (2*NMAX)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] WORK
|
||
|
*> \verbatim
|
||
|
*> WORK is COMPLEX*16 array, dimension
|
||
|
*> (NMAX*max(3,NRHS))
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] RWORK
|
||
|
*> \verbatim
|
||
|
*> RWORK is DOUBLE PRECISION array, dimension (2*NRHS+NMAX)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] IWORK
|
||
|
*> \verbatim
|
||
|
*> IWORK is INTEGER array, dimension (NMAX)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] NOUT
|
||
|
*> \verbatim
|
||
|
*> NOUT is INTEGER
|
||
|
*> The unit number for output.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Authors:
|
||
|
* ========
|
||
|
*
|
||
|
*> \author Univ. of Tennessee
|
||
|
*> \author Univ. of California Berkeley
|
||
|
*> \author Univ. of Colorado Denver
|
||
|
*> \author NAG Ltd.
|
||
|
*
|
||
|
*> \ingroup complex16_lin
|
||
|
*
|
||
|
* =====================================================================
|
||
|
SUBROUTINE ZDRVGE( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, NMAX,
|
||
|
$ A, AFAC, ASAV, B, BSAV, X, XACT, S, WORK,
|
||
|
$ RWORK, IWORK, NOUT )
|
||
|
*
|
||
|
* -- LAPACK test routine --
|
||
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
LOGICAL TSTERR
|
||
|
INTEGER NMAX, NN, NOUT, NRHS
|
||
|
DOUBLE PRECISION THRESH
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
LOGICAL DOTYPE( * )
|
||
|
INTEGER IWORK( * ), NVAL( * )
|
||
|
DOUBLE PRECISION RWORK( * ), S( * )
|
||
|
COMPLEX*16 A( * ), AFAC( * ), ASAV( * ), B( * ),
|
||
|
$ BSAV( * ), WORK( * ), X( * ), XACT( * )
|
||
|
* ..
|
||
|
*
|
||
|
* =====================================================================
|
||
|
*
|
||
|
* .. Parameters ..
|
||
|
DOUBLE PRECISION ONE, ZERO
|
||
|
PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
|
||
|
INTEGER NTYPES
|
||
|
PARAMETER ( NTYPES = 11 )
|
||
|
INTEGER NTESTS
|
||
|
PARAMETER ( NTESTS = 7 )
|
||
|
INTEGER NTRAN
|
||
|
PARAMETER ( NTRAN = 3 )
|
||
|
* ..
|
||
|
* .. Local Scalars ..
|
||
|
LOGICAL EQUIL, NOFACT, PREFAC, TRFCON, ZEROT
|
||
|
CHARACTER DIST, EQUED, FACT, TRANS, TYPE, XTYPE
|
||
|
CHARACTER*3 PATH
|
||
|
INTEGER I, IEQUED, IFACT, IMAT, IN, INFO, IOFF, ITRAN,
|
||
|
$ IZERO, K, K1, KL, KU, LDA, LWORK, MODE, N, NB,
|
||
|
$ NBMIN, NERRS, NFACT, NFAIL, NIMAT, NRUN, NT
|
||
|
DOUBLE PRECISION AINVNM, AMAX, ANORM, ANORMI, ANORMO, CNDNUM,
|
||
|
$ COLCND, RCOND, RCONDC, RCONDI, RCONDO, ROLDC,
|
||
|
$ ROLDI, ROLDO, ROWCND, RPVGRW
|
||
|
* ..
|
||
|
* .. Local Arrays ..
|
||
|
CHARACTER EQUEDS( 4 ), FACTS( 3 ), TRANSS( NTRAN )
|
||
|
INTEGER ISEED( 4 ), ISEEDY( 4 )
|
||
|
DOUBLE PRECISION RDUM( 1 ), RESULT( NTESTS )
|
||
|
* ..
|
||
|
* .. External Functions ..
|
||
|
LOGICAL LSAME
|
||
|
DOUBLE PRECISION DGET06, DLAMCH, ZLANGE, ZLANTR
|
||
|
EXTERNAL LSAME, DGET06, DLAMCH, ZLANGE, ZLANTR
|
||
|
* ..
|
||
|
* .. External Subroutines ..
|
||
|
EXTERNAL ALADHD, ALAERH, ALASVM, XLAENV, ZERRVX, ZGEEQU,
|
||
|
$ ZGESV, ZGESVX, ZGET01, ZGET02, ZGET04, ZGET07,
|
||
|
$ ZGETRF, ZGETRI, ZLACPY, ZLAQGE, ZLARHS, ZLASET,
|
||
|
$ ZLATB4, ZLATMS
|
||
|
* ..
|
||
|
* .. Intrinsic Functions ..
|
||
|
INTRINSIC ABS, DCMPLX, MAX
|
||
|
* ..
|
||
|
* .. Scalars in Common ..
|
||
|
LOGICAL LERR, OK
|
||
|
CHARACTER*32 SRNAMT
|
||
|
INTEGER INFOT, NUNIT
|
||
|
* ..
|
||
|
* .. Common blocks ..
|
||
|
COMMON / INFOC / INFOT, NUNIT, OK, LERR
|
||
|
COMMON / SRNAMC / SRNAMT
|
||
|
* ..
|
||
|
* .. Data statements ..
|
||
|
DATA ISEEDY / 1988, 1989, 1990, 1991 /
|
||
|
DATA TRANSS / 'N', 'T', 'C' /
|
||
|
DATA FACTS / 'F', 'N', 'E' /
|
||
|
DATA EQUEDS / 'N', 'R', 'C', 'B' /
|
||
|
* ..
|
||
|
* .. Executable Statements ..
|
||
|
*
|
||
|
* Initialize constants and the random number seed.
|
||
|
*
|
||
|
PATH( 1: 1 ) = 'Zomplex precision'
|
||
|
PATH( 2: 3 ) = 'GE'
|
||
|
NRUN = 0
|
||
|
NFAIL = 0
|
||
|
NERRS = 0
|
||
|
DO 10 I = 1, 4
|
||
|
ISEED( I ) = ISEEDY( I )
|
||
|
10 CONTINUE
|
||
|
*
|
||
|
* Test the error exits
|
||
|
*
|
||
|
IF( TSTERR )
|
||
|
$ CALL ZERRVX( PATH, NOUT )
|
||
|
INFOT = 0
|
||
|
*
|
||
|
* Set the block size and minimum block size for testing.
|
||
|
*
|
||
|
NB = 1
|
||
|
NBMIN = 2
|
||
|
CALL XLAENV( 1, NB )
|
||
|
CALL XLAENV( 2, NBMIN )
|
||
|
*
|
||
|
* Do for each value of N in NVAL
|
||
|
*
|
||
|
DO 90 IN = 1, NN
|
||
|
N = NVAL( IN )
|
||
|
LDA = MAX( N, 1 )
|
||
|
XTYPE = 'N'
|
||
|
NIMAT = NTYPES
|
||
|
IF( N.LE.0 )
|
||
|
$ NIMAT = 1
|
||
|
*
|
||
|
DO 80 IMAT = 1, NIMAT
|
||
|
*
|
||
|
* Do the tests only if DOTYPE( IMAT ) is true.
|
||
|
*
|
||
|
IF( .NOT.DOTYPE( IMAT ) )
|
||
|
$ GO TO 80
|
||
|
*
|
||
|
* Skip types 5, 6, or 7 if the matrix size is too small.
|
||
|
*
|
||
|
ZEROT = IMAT.GE.5 .AND. IMAT.LE.7
|
||
|
IF( ZEROT .AND. N.LT.IMAT-4 )
|
||
|
$ GO TO 80
|
||
|
*
|
||
|
* Set up parameters with ZLATB4 and generate a test matrix
|
||
|
* with ZLATMS.
|
||
|
*
|
||
|
CALL ZLATB4( PATH, IMAT, N, N, TYPE, KL, KU, ANORM, MODE,
|
||
|
$ CNDNUM, DIST )
|
||
|
RCONDC = ONE / CNDNUM
|
||
|
*
|
||
|
SRNAMT = 'ZLATMS'
|
||
|
CALL ZLATMS( N, N, DIST, ISEED, TYPE, RWORK, MODE, CNDNUM,
|
||
|
$ ANORM, KL, KU, 'No packing', A, LDA, WORK,
|
||
|
$ INFO )
|
||
|
*
|
||
|
* Check error code from ZLATMS.
|
||
|
*
|
||
|
IF( INFO.NE.0 ) THEN
|
||
|
CALL ALAERH( PATH, 'ZLATMS', INFO, 0, ' ', N, N, -1, -1,
|
||
|
$ -1, IMAT, NFAIL, NERRS, NOUT )
|
||
|
GO TO 80
|
||
|
END IF
|
||
|
*
|
||
|
* For types 5-7, zero one or more columns of the matrix to
|
||
|
* test that INFO is returned correctly.
|
||
|
*
|
||
|
IF( ZEROT ) THEN
|
||
|
IF( IMAT.EQ.5 ) THEN
|
||
|
IZERO = 1
|
||
|
ELSE IF( IMAT.EQ.6 ) THEN
|
||
|
IZERO = N
|
||
|
ELSE
|
||
|
IZERO = N / 2 + 1
|
||
|
END IF
|
||
|
IOFF = ( IZERO-1 )*LDA
|
||
|
IF( IMAT.LT.7 ) THEN
|
||
|
DO 20 I = 1, N
|
||
|
A( IOFF+I ) = ZERO
|
||
|
20 CONTINUE
|
||
|
ELSE
|
||
|
CALL ZLASET( 'Full', N, N-IZERO+1, DCMPLX( ZERO ),
|
||
|
$ DCMPLX( ZERO ), A( IOFF+1 ), LDA )
|
||
|
END IF
|
||
|
ELSE
|
||
|
IZERO = 0
|
||
|
END IF
|
||
|
*
|
||
|
* Save a copy of the matrix A in ASAV.
|
||
|
*
|
||
|
CALL ZLACPY( 'Full', N, N, A, LDA, ASAV, LDA )
|
||
|
*
|
||
|
DO 70 IEQUED = 1, 4
|
||
|
EQUED = EQUEDS( IEQUED )
|
||
|
IF( IEQUED.EQ.1 ) THEN
|
||
|
NFACT = 3
|
||
|
ELSE
|
||
|
NFACT = 1
|
||
|
END IF
|
||
|
*
|
||
|
DO 60 IFACT = 1, NFACT
|
||
|
FACT = FACTS( IFACT )
|
||
|
PREFAC = LSAME( FACT, 'F' )
|
||
|
NOFACT = LSAME( FACT, 'N' )
|
||
|
EQUIL = LSAME( FACT, 'E' )
|
||
|
*
|
||
|
IF( ZEROT ) THEN
|
||
|
IF( PREFAC )
|
||
|
$ GO TO 60
|
||
|
RCONDO = ZERO
|
||
|
RCONDI = ZERO
|
||
|
*
|
||
|
ELSE IF( .NOT.NOFACT ) THEN
|
||
|
*
|
||
|
* Compute the condition number for comparison with
|
||
|
* the value returned by ZGESVX (FACT = 'N' reuses
|
||
|
* the condition number from the previous iteration
|
||
|
* with FACT = 'F').
|
||
|
*
|
||
|
CALL ZLACPY( 'Full', N, N, ASAV, LDA, AFAC, LDA )
|
||
|
IF( EQUIL .OR. IEQUED.GT.1 ) THEN
|
||
|
*
|
||
|
* Compute row and column scale factors to
|
||
|
* equilibrate the matrix A.
|
||
|
*
|
||
|
CALL ZGEEQU( N, N, AFAC, LDA, S, S( N+1 ),
|
||
|
$ ROWCND, COLCND, AMAX, INFO )
|
||
|
IF( INFO.EQ.0 .AND. N.GT.0 ) THEN
|
||
|
IF( LSAME( EQUED, 'R' ) ) THEN
|
||
|
ROWCND = ZERO
|
||
|
COLCND = ONE
|
||
|
ELSE IF( LSAME( EQUED, 'C' ) ) THEN
|
||
|
ROWCND = ONE
|
||
|
COLCND = ZERO
|
||
|
ELSE IF( LSAME( EQUED, 'B' ) ) THEN
|
||
|
ROWCND = ZERO
|
||
|
COLCND = ZERO
|
||
|
END IF
|
||
|
*
|
||
|
* Equilibrate the matrix.
|
||
|
*
|
||
|
CALL ZLAQGE( N, N, AFAC, LDA, S, S( N+1 ),
|
||
|
$ ROWCND, COLCND, AMAX, EQUED )
|
||
|
END IF
|
||
|
END IF
|
||
|
*
|
||
|
* Save the condition number of the non-equilibrated
|
||
|
* system for use in ZGET04.
|
||
|
*
|
||
|
IF( EQUIL ) THEN
|
||
|
ROLDO = RCONDO
|
||
|
ROLDI = RCONDI
|
||
|
END IF
|
||
|
*
|
||
|
* Compute the 1-norm and infinity-norm of A.
|
||
|
*
|
||
|
ANORMO = ZLANGE( '1', N, N, AFAC, LDA, RWORK )
|
||
|
ANORMI = ZLANGE( 'I', N, N, AFAC, LDA, RWORK )
|
||
|
*
|
||
|
* Factor the matrix A.
|
||
|
*
|
||
|
SRNAMT = 'ZGETRF'
|
||
|
CALL ZGETRF( N, N, AFAC, LDA, IWORK, INFO )
|
||
|
*
|
||
|
* Form the inverse of A.
|
||
|
*
|
||
|
CALL ZLACPY( 'Full', N, N, AFAC, LDA, A, LDA )
|
||
|
LWORK = NMAX*MAX( 3, NRHS )
|
||
|
SRNAMT = 'ZGETRI'
|
||
|
CALL ZGETRI( N, A, LDA, IWORK, WORK, LWORK, INFO )
|
||
|
*
|
||
|
* Compute the 1-norm condition number of A.
|
||
|
*
|
||
|
AINVNM = ZLANGE( '1', N, N, A, LDA, RWORK )
|
||
|
IF( ANORMO.LE.ZERO .OR. AINVNM.LE.ZERO ) THEN
|
||
|
RCONDO = ONE
|
||
|
ELSE
|
||
|
RCONDO = ( ONE / ANORMO ) / AINVNM
|
||
|
END IF
|
||
|
*
|
||
|
* Compute the infinity-norm condition number of A.
|
||
|
*
|
||
|
AINVNM = ZLANGE( 'I', N, N, A, LDA, RWORK )
|
||
|
IF( ANORMI.LE.ZERO .OR. AINVNM.LE.ZERO ) THEN
|
||
|
RCONDI = ONE
|
||
|
ELSE
|
||
|
RCONDI = ( ONE / ANORMI ) / AINVNM
|
||
|
END IF
|
||
|
END IF
|
||
|
*
|
||
|
DO 50 ITRAN = 1, NTRAN
|
||
|
*
|
||
|
* Do for each value of TRANS.
|
||
|
*
|
||
|
TRANS = TRANSS( ITRAN )
|
||
|
IF( ITRAN.EQ.1 ) THEN
|
||
|
RCONDC = RCONDO
|
||
|
ELSE
|
||
|
RCONDC = RCONDI
|
||
|
END IF
|
||
|
*
|
||
|
* Restore the matrix A.
|
||
|
*
|
||
|
CALL ZLACPY( 'Full', N, N, ASAV, LDA, A, LDA )
|
||
|
*
|
||
|
* Form an exact solution and set the right hand side.
|
||
|
*
|
||
|
SRNAMT = 'ZLARHS'
|
||
|
CALL ZLARHS( PATH, XTYPE, 'Full', TRANS, N, N, KL,
|
||
|
$ KU, NRHS, A, LDA, XACT, LDA, B, LDA,
|
||
|
$ ISEED, INFO )
|
||
|
XTYPE = 'C'
|
||
|
CALL ZLACPY( 'Full', N, NRHS, B, LDA, BSAV, LDA )
|
||
|
*
|
||
|
IF( NOFACT .AND. ITRAN.EQ.1 ) THEN
|
||
|
*
|
||
|
* --- Test ZGESV ---
|
||
|
*
|
||
|
* Compute the LU factorization of the matrix and
|
||
|
* solve the system.
|
||
|
*
|
||
|
CALL ZLACPY( 'Full', N, N, A, LDA, AFAC, LDA )
|
||
|
CALL ZLACPY( 'Full', N, NRHS, B, LDA, X, LDA )
|
||
|
*
|
||
|
SRNAMT = 'ZGESV '
|
||
|
CALL ZGESV( N, NRHS, AFAC, LDA, IWORK, X, LDA,
|
||
|
$ INFO )
|
||
|
*
|
||
|
* Check error code from ZGESV .
|
||
|
*
|
||
|
IF( INFO.NE.IZERO )
|
||
|
$ CALL ALAERH( PATH, 'ZGESV ', INFO, IZERO,
|
||
|
$ ' ', N, N, -1, -1, NRHS, IMAT,
|
||
|
$ NFAIL, NERRS, NOUT )
|
||
|
*
|
||
|
* Reconstruct matrix from factors and compute
|
||
|
* residual.
|
||
|
*
|
||
|
CALL ZGET01( N, N, A, LDA, AFAC, LDA, IWORK,
|
||
|
$ RWORK, RESULT( 1 ) )
|
||
|
NT = 1
|
||
|
IF( IZERO.EQ.0 ) THEN
|
||
|
*
|
||
|
* Compute residual of the computed solution.
|
||
|
*
|
||
|
CALL ZLACPY( 'Full', N, NRHS, B, LDA, WORK,
|
||
|
$ LDA )
|
||
|
CALL ZGET02( 'No transpose', N, N, NRHS, A,
|
||
|
$ LDA, X, LDA, WORK, LDA, RWORK,
|
||
|
$ RESULT( 2 ) )
|
||
|
*
|
||
|
* Check solution from generated exact solution.
|
||
|
*
|
||
|
CALL ZGET04( N, NRHS, X, LDA, XACT, LDA,
|
||
|
$ RCONDC, RESULT( 3 ) )
|
||
|
NT = 3
|
||
|
END IF
|
||
|
*
|
||
|
* Print information about the tests that did not
|
||
|
* pass the threshold.
|
||
|
*
|
||
|
DO 30 K = 1, NT
|
||
|
IF( RESULT( K ).GE.THRESH ) THEN
|
||
|
IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
|
||
|
$ CALL ALADHD( NOUT, PATH )
|
||
|
WRITE( NOUT, FMT = 9999 )'ZGESV ', N,
|
||
|
$ IMAT, K, RESULT( K )
|
||
|
NFAIL = NFAIL + 1
|
||
|
END IF
|
||
|
30 CONTINUE
|
||
|
NRUN = NRUN + NT
|
||
|
END IF
|
||
|
*
|
||
|
* --- Test ZGESVX ---
|
||
|
*
|
||
|
IF( .NOT.PREFAC )
|
||
|
$ CALL ZLASET( 'Full', N, N, DCMPLX( ZERO ),
|
||
|
$ DCMPLX( ZERO ), AFAC, LDA )
|
||
|
CALL ZLASET( 'Full', N, NRHS, DCMPLX( ZERO ),
|
||
|
$ DCMPLX( ZERO ), X, LDA )
|
||
|
IF( IEQUED.GT.1 .AND. N.GT.0 ) THEN
|
||
|
*
|
||
|
* Equilibrate the matrix if FACT = 'F' and
|
||
|
* EQUED = 'R', 'C', or 'B'.
|
||
|
*
|
||
|
CALL ZLAQGE( N, N, A, LDA, S, S( N+1 ), ROWCND,
|
||
|
$ COLCND, AMAX, EQUED )
|
||
|
END IF
|
||
|
*
|
||
|
* Solve the system and compute the condition number
|
||
|
* and error bounds using ZGESVX.
|
||
|
*
|
||
|
SRNAMT = 'ZGESVX'
|
||
|
CALL ZGESVX( FACT, TRANS, N, NRHS, A, LDA, AFAC,
|
||
|
$ LDA, IWORK, EQUED, S, S( N+1 ), B,
|
||
|
$ LDA, X, LDA, RCOND, RWORK,
|
||
|
$ RWORK( NRHS+1 ), WORK,
|
||
|
$ RWORK( 2*NRHS+1 ), INFO )
|
||
|
*
|
||
|
* Check the error code from ZGESVX.
|
||
|
*
|
||
|
IF( INFO.NE.IZERO )
|
||
|
$ CALL ALAERH( PATH, 'ZGESVX', INFO, IZERO,
|
||
|
$ FACT // TRANS, N, N, -1, -1, NRHS,
|
||
|
$ IMAT, NFAIL, NERRS, NOUT )
|
||
|
*
|
||
|
* Compare RWORK(2*NRHS+1) from ZGESVX with the
|
||
|
* computed reciprocal pivot growth factor RPVGRW
|
||
|
*
|
||
|
IF( INFO.NE.0 .AND. INFO.LE.N) THEN
|
||
|
RPVGRW = ZLANTR( 'M', 'U', 'N', INFO, INFO,
|
||
|
$ AFAC, LDA, RDUM )
|
||
|
IF( RPVGRW.EQ.ZERO ) THEN
|
||
|
RPVGRW = ONE
|
||
|
ELSE
|
||
|
RPVGRW = ZLANGE( 'M', N, INFO, A, LDA,
|
||
|
$ RDUM ) / RPVGRW
|
||
|
END IF
|
||
|
ELSE
|
||
|
RPVGRW = ZLANTR( 'M', 'U', 'N', N, N, AFAC, LDA,
|
||
|
$ RDUM )
|
||
|
IF( RPVGRW.EQ.ZERO ) THEN
|
||
|
RPVGRW = ONE
|
||
|
ELSE
|
||
|
RPVGRW = ZLANGE( 'M', N, N, A, LDA, RDUM ) /
|
||
|
$ RPVGRW
|
||
|
END IF
|
||
|
END IF
|
||
|
RESULT( 7 ) = ABS( RPVGRW-RWORK( 2*NRHS+1 ) ) /
|
||
|
$ MAX( RWORK( 2*NRHS+1 ), RPVGRW ) /
|
||
|
$ DLAMCH( 'E' )
|
||
|
*
|
||
|
IF( .NOT.PREFAC ) THEN
|
||
|
*
|
||
|
* Reconstruct matrix from factors and compute
|
||
|
* residual.
|
||
|
*
|
||
|
CALL ZGET01( N, N, A, LDA, AFAC, LDA, IWORK,
|
||
|
$ RWORK( 2*NRHS+1 ), RESULT( 1 ) )
|
||
|
K1 = 1
|
||
|
ELSE
|
||
|
K1 = 2
|
||
|
END IF
|
||
|
*
|
||
|
IF( INFO.EQ.0 ) THEN
|
||
|
TRFCON = .FALSE.
|
||
|
*
|
||
|
* Compute residual of the computed solution.
|
||
|
*
|
||
|
CALL ZLACPY( 'Full', N, NRHS, BSAV, LDA, WORK,
|
||
|
$ LDA )
|
||
|
CALL ZGET02( TRANS, N, N, NRHS, ASAV, LDA, X,
|
||
|
$ LDA, WORK, LDA, RWORK( 2*NRHS+1 ),
|
||
|
$ RESULT( 2 ) )
|
||
|
*
|
||
|
* Check solution from generated exact solution.
|
||
|
*
|
||
|
IF( NOFACT .OR. ( PREFAC .AND. LSAME( EQUED,
|
||
|
$ 'N' ) ) ) THEN
|
||
|
CALL ZGET04( N, NRHS, X, LDA, XACT, LDA,
|
||
|
$ RCONDC, RESULT( 3 ) )
|
||
|
ELSE
|
||
|
IF( ITRAN.EQ.1 ) THEN
|
||
|
ROLDC = ROLDO
|
||
|
ELSE
|
||
|
ROLDC = ROLDI
|
||
|
END IF
|
||
|
CALL ZGET04( N, NRHS, X, LDA, XACT, LDA,
|
||
|
$ ROLDC, RESULT( 3 ) )
|
||
|
END IF
|
||
|
*
|
||
|
* Check the error bounds from iterative
|
||
|
* refinement.
|
||
|
*
|
||
|
CALL ZGET07( TRANS, N, NRHS, ASAV, LDA, B, LDA,
|
||
|
$ X, LDA, XACT, LDA, RWORK, .TRUE.,
|
||
|
$ RWORK( NRHS+1 ), RESULT( 4 ) )
|
||
|
ELSE
|
||
|
TRFCON = .TRUE.
|
||
|
END IF
|
||
|
*
|
||
|
* Compare RCOND from ZGESVX with the computed value
|
||
|
* in RCONDC.
|
||
|
*
|
||
|
RESULT( 6 ) = DGET06( RCOND, RCONDC )
|
||
|
*
|
||
|
* Print information about the tests that did not pass
|
||
|
* the threshold.
|
||
|
*
|
||
|
IF( .NOT.TRFCON ) THEN
|
||
|
DO 40 K = K1, NTESTS
|
||
|
IF( RESULT( K ).GE.THRESH ) THEN
|
||
|
IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
|
||
|
$ CALL ALADHD( NOUT, PATH )
|
||
|
IF( PREFAC ) THEN
|
||
|
WRITE( NOUT, FMT = 9997 )'ZGESVX',
|
||
|
$ FACT, TRANS, N, EQUED, IMAT, K,
|
||
|
$ RESULT( K )
|
||
|
ELSE
|
||
|
WRITE( NOUT, FMT = 9998 )'ZGESVX',
|
||
|
$ FACT, TRANS, N, IMAT, K, RESULT( K )
|
||
|
END IF
|
||
|
NFAIL = NFAIL + 1
|
||
|
END IF
|
||
|
40 CONTINUE
|
||
|
NRUN = NRUN + NTESTS - K1 + 1
|
||
|
ELSE
|
||
|
IF( RESULT( 1 ).GE.THRESH .AND. .NOT.PREFAC )
|
||
|
$ THEN
|
||
|
IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
|
||
|
$ CALL ALADHD( NOUT, PATH )
|
||
|
IF( PREFAC ) THEN
|
||
|
WRITE( NOUT, FMT = 9997 )'ZGESVX', FACT,
|
||
|
$ TRANS, N, EQUED, IMAT, 1, RESULT( 1 )
|
||
|
ELSE
|
||
|
WRITE( NOUT, FMT = 9998 )'ZGESVX', FACT,
|
||
|
$ TRANS, N, IMAT, 1, RESULT( 1 )
|
||
|
END IF
|
||
|
NFAIL = NFAIL + 1
|
||
|
NRUN = NRUN + 1
|
||
|
END IF
|
||
|
IF( RESULT( 6 ).GE.THRESH ) THEN
|
||
|
IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
|
||
|
$ CALL ALADHD( NOUT, PATH )
|
||
|
IF( PREFAC ) THEN
|
||
|
WRITE( NOUT, FMT = 9997 )'ZGESVX', FACT,
|
||
|
$ TRANS, N, EQUED, IMAT, 6, RESULT( 6 )
|
||
|
ELSE
|
||
|
WRITE( NOUT, FMT = 9998 )'ZGESVX', FACT,
|
||
|
$ TRANS, N, IMAT, 6, RESULT( 6 )
|
||
|
END IF
|
||
|
NFAIL = NFAIL + 1
|
||
|
NRUN = NRUN + 1
|
||
|
END IF
|
||
|
IF( RESULT( 7 ).GE.THRESH ) THEN
|
||
|
IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
|
||
|
$ CALL ALADHD( NOUT, PATH )
|
||
|
IF( PREFAC ) THEN
|
||
|
WRITE( NOUT, FMT = 9997 )'ZGESVX', FACT,
|
||
|
$ TRANS, N, EQUED, IMAT, 7, RESULT( 7 )
|
||
|
ELSE
|
||
|
WRITE( NOUT, FMT = 9998 )'ZGESVX', FACT,
|
||
|
$ TRANS, N, IMAT, 7, RESULT( 7 )
|
||
|
END IF
|
||
|
NFAIL = NFAIL + 1
|
||
|
NRUN = NRUN + 1
|
||
|
END IF
|
||
|
*
|
||
|
END IF
|
||
|
*
|
||
|
50 CONTINUE
|
||
|
60 CONTINUE
|
||
|
70 CONTINUE
|
||
|
80 CONTINUE
|
||
|
90 CONTINUE
|
||
|
*
|
||
|
* Print a summary of the results.
|
||
|
*
|
||
|
CALL ALASVM( PATH, NOUT, NFAIL, NRUN, NERRS )
|
||
|
*
|
||
|
9999 FORMAT( 1X, A, ', N =', I5, ', type ', I2, ', test(', I2, ') =',
|
||
|
$ G12.5 )
|
||
|
9998 FORMAT( 1X, A, ', FACT=''', A1, ''', TRANS=''', A1, ''', N=', I5,
|
||
|
$ ', type ', I2, ', test(', I1, ')=', G12.5 )
|
||
|
9997 FORMAT( 1X, A, ', FACT=''', A1, ''', TRANS=''', A1, ''', N=', I5,
|
||
|
$ ', EQUED=''', A1, ''', type ', I2, ', test(', I1, ')=',
|
||
|
$ G12.5 )
|
||
|
RETURN
|
||
|
*
|
||
|
* End of ZDRVGE
|
||
|
*
|
||
|
END
|