You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
593 lines
19 KiB
593 lines
19 KiB
2 years ago
|
*> \brief \b ZDRVGT
|
||
|
*
|
||
|
* =========== DOCUMENTATION ===========
|
||
|
*
|
||
|
* Online html documentation available at
|
||
|
* http://www.netlib.org/lapack/explore-html/
|
||
|
*
|
||
|
* Definition:
|
||
|
* ===========
|
||
|
*
|
||
|
* SUBROUTINE ZDRVGT( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, A, AF,
|
||
|
* B, X, XACT, WORK, RWORK, IWORK, NOUT )
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
* LOGICAL TSTERR
|
||
|
* INTEGER NN, NOUT, NRHS
|
||
|
* DOUBLE PRECISION THRESH
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
* LOGICAL DOTYPE( * )
|
||
|
* INTEGER IWORK( * ), NVAL( * )
|
||
|
* DOUBLE PRECISION RWORK( * )
|
||
|
* COMPLEX*16 A( * ), AF( * ), B( * ), WORK( * ), X( * ),
|
||
|
* $ XACT( * )
|
||
|
* ..
|
||
|
*
|
||
|
*
|
||
|
*> \par Purpose:
|
||
|
* =============
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*> ZDRVGT tests ZGTSV and -SVX.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Arguments:
|
||
|
* ==========
|
||
|
*
|
||
|
*> \param[in] DOTYPE
|
||
|
*> \verbatim
|
||
|
*> DOTYPE is LOGICAL array, dimension (NTYPES)
|
||
|
*> The matrix types to be used for testing. Matrices of type j
|
||
|
*> (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
|
||
|
*> .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] NN
|
||
|
*> \verbatim
|
||
|
*> NN is INTEGER
|
||
|
*> The number of values of N contained in the vector NVAL.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] NVAL
|
||
|
*> \verbatim
|
||
|
*> NVAL is INTEGER array, dimension (NN)
|
||
|
*> The values of the matrix dimension N.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] NRHS
|
||
|
*> \verbatim
|
||
|
*> NRHS is INTEGER
|
||
|
*> The number of right hand sides, NRHS >= 0.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] THRESH
|
||
|
*> \verbatim
|
||
|
*> THRESH is DOUBLE PRECISION
|
||
|
*> The threshold value for the test ratios. A result is
|
||
|
*> included in the output file if RESULT >= THRESH. To have
|
||
|
*> every test ratio printed, use THRESH = 0.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] TSTERR
|
||
|
*> \verbatim
|
||
|
*> TSTERR is LOGICAL
|
||
|
*> Flag that indicates whether error exits are to be tested.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] A
|
||
|
*> \verbatim
|
||
|
*> A is COMPLEX*16 array, dimension (NMAX*4)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] AF
|
||
|
*> \verbatim
|
||
|
*> AF is COMPLEX*16 array, dimension (NMAX*4)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] B
|
||
|
*> \verbatim
|
||
|
*> B is COMPLEX*16 array, dimension (NMAX*NRHS)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] X
|
||
|
*> \verbatim
|
||
|
*> X is COMPLEX*16 array, dimension (NMAX*NRHS)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] XACT
|
||
|
*> \verbatim
|
||
|
*> XACT is COMPLEX*16 array, dimension (NMAX*NRHS)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] WORK
|
||
|
*> \verbatim
|
||
|
*> WORK is COMPLEX*16 array, dimension
|
||
|
*> (NMAX*max(3,NRHS))
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] RWORK
|
||
|
*> \verbatim
|
||
|
*> RWORK is DOUBLE PRECISION array, dimension (NMAX+2*NRHS)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] IWORK
|
||
|
*> \verbatim
|
||
|
*> IWORK is INTEGER array, dimension (2*NMAX)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] NOUT
|
||
|
*> \verbatim
|
||
|
*> NOUT is INTEGER
|
||
|
*> The unit number for output.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Authors:
|
||
|
* ========
|
||
|
*
|
||
|
*> \author Univ. of Tennessee
|
||
|
*> \author Univ. of California Berkeley
|
||
|
*> \author Univ. of Colorado Denver
|
||
|
*> \author NAG Ltd.
|
||
|
*
|
||
|
*> \ingroup complex16_lin
|
||
|
*
|
||
|
* =====================================================================
|
||
|
SUBROUTINE ZDRVGT( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, A, AF,
|
||
|
$ B, X, XACT, WORK, RWORK, IWORK, NOUT )
|
||
|
*
|
||
|
* -- LAPACK test routine --
|
||
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
LOGICAL TSTERR
|
||
|
INTEGER NN, NOUT, NRHS
|
||
|
DOUBLE PRECISION THRESH
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
LOGICAL DOTYPE( * )
|
||
|
INTEGER IWORK( * ), NVAL( * )
|
||
|
DOUBLE PRECISION RWORK( * )
|
||
|
COMPLEX*16 A( * ), AF( * ), B( * ), WORK( * ), X( * ),
|
||
|
$ XACT( * )
|
||
|
* ..
|
||
|
*
|
||
|
* =====================================================================
|
||
|
*
|
||
|
* .. Parameters ..
|
||
|
DOUBLE PRECISION ONE, ZERO
|
||
|
PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
|
||
|
INTEGER NTYPES
|
||
|
PARAMETER ( NTYPES = 12 )
|
||
|
INTEGER NTESTS
|
||
|
PARAMETER ( NTESTS = 6 )
|
||
|
* ..
|
||
|
* .. Local Scalars ..
|
||
|
LOGICAL TRFCON, ZEROT
|
||
|
CHARACTER DIST, FACT, TRANS, TYPE
|
||
|
CHARACTER*3 PATH
|
||
|
INTEGER I, IFACT, IMAT, IN, INFO, ITRAN, IX, IZERO, J,
|
||
|
$ K, K1, KL, KOFF, KU, LDA, M, MODE, N, NERRS,
|
||
|
$ NFAIL, NIMAT, NRUN, NT
|
||
|
DOUBLE PRECISION AINVNM, ANORM, ANORMI, ANORMO, COND, RCOND,
|
||
|
$ RCONDC, RCONDI, RCONDO
|
||
|
* ..
|
||
|
* .. Local Arrays ..
|
||
|
CHARACTER TRANSS( 3 )
|
||
|
INTEGER ISEED( 4 ), ISEEDY( 4 )
|
||
|
DOUBLE PRECISION RESULT( NTESTS ), Z( 3 )
|
||
|
* ..
|
||
|
* .. External Functions ..
|
||
|
DOUBLE PRECISION DGET06, DZASUM, ZLANGT
|
||
|
EXTERNAL DGET06, DZASUM, ZLANGT
|
||
|
* ..
|
||
|
* .. External Subroutines ..
|
||
|
EXTERNAL ALADHD, ALAERH, ALASVM, ZCOPY, ZDSCAL, ZERRVX,
|
||
|
$ ZGET04, ZGTSV, ZGTSVX, ZGTT01, ZGTT02, ZGTT05,
|
||
|
$ ZGTTRF, ZGTTRS, ZLACPY, ZLAGTM, ZLARNV, ZLASET,
|
||
|
$ ZLATB4, ZLATMS
|
||
|
* ..
|
||
|
* .. Intrinsic Functions ..
|
||
|
INTRINSIC DCMPLX, MAX
|
||
|
* ..
|
||
|
* .. Scalars in Common ..
|
||
|
LOGICAL LERR, OK
|
||
|
CHARACTER*32 SRNAMT
|
||
|
INTEGER INFOT, NUNIT
|
||
|
* ..
|
||
|
* .. Common blocks ..
|
||
|
COMMON / INFOC / INFOT, NUNIT, OK, LERR
|
||
|
COMMON / SRNAMC / SRNAMT
|
||
|
* ..
|
||
|
* .. Data statements ..
|
||
|
DATA ISEEDY / 0, 0, 0, 1 / , TRANSS / 'N', 'T',
|
||
|
$ 'C' /
|
||
|
* ..
|
||
|
* .. Executable Statements ..
|
||
|
*
|
||
|
PATH( 1: 1 ) = 'Zomplex precision'
|
||
|
PATH( 2: 3 ) = 'GT'
|
||
|
NRUN = 0
|
||
|
NFAIL = 0
|
||
|
NERRS = 0
|
||
|
DO 10 I = 1, 4
|
||
|
ISEED( I ) = ISEEDY( I )
|
||
|
10 CONTINUE
|
||
|
*
|
||
|
* Test the error exits
|
||
|
*
|
||
|
IF( TSTERR )
|
||
|
$ CALL ZERRVX( PATH, NOUT )
|
||
|
INFOT = 0
|
||
|
*
|
||
|
DO 140 IN = 1, NN
|
||
|
*
|
||
|
* Do for each value of N in NVAL.
|
||
|
*
|
||
|
N = NVAL( IN )
|
||
|
M = MAX( N-1, 0 )
|
||
|
LDA = MAX( 1, N )
|
||
|
NIMAT = NTYPES
|
||
|
IF( N.LE.0 )
|
||
|
$ NIMAT = 1
|
||
|
*
|
||
|
DO 130 IMAT = 1, NIMAT
|
||
|
*
|
||
|
* Do the tests only if DOTYPE( IMAT ) is true.
|
||
|
*
|
||
|
IF( .NOT.DOTYPE( IMAT ) )
|
||
|
$ GO TO 130
|
||
|
*
|
||
|
* Set up parameters with ZLATB4.
|
||
|
*
|
||
|
CALL ZLATB4( PATH, IMAT, N, N, TYPE, KL, KU, ANORM, MODE,
|
||
|
$ COND, DIST )
|
||
|
*
|
||
|
ZEROT = IMAT.GE.8 .AND. IMAT.LE.10
|
||
|
IF( IMAT.LE.6 ) THEN
|
||
|
*
|
||
|
* Types 1-6: generate matrices of known condition number.
|
||
|
*
|
||
|
KOFF = MAX( 2-KU, 3-MAX( 1, N ) )
|
||
|
SRNAMT = 'ZLATMS'
|
||
|
CALL ZLATMS( N, N, DIST, ISEED, TYPE, RWORK, MODE, COND,
|
||
|
$ ANORM, KL, KU, 'Z', AF( KOFF ), 3, WORK,
|
||
|
$ INFO )
|
||
|
*
|
||
|
* Check the error code from ZLATMS.
|
||
|
*
|
||
|
IF( INFO.NE.0 ) THEN
|
||
|
CALL ALAERH( PATH, 'ZLATMS', INFO, 0, ' ', N, N, KL,
|
||
|
$ KU, -1, IMAT, NFAIL, NERRS, NOUT )
|
||
|
GO TO 130
|
||
|
END IF
|
||
|
IZERO = 0
|
||
|
*
|
||
|
IF( N.GT.1 ) THEN
|
||
|
CALL ZCOPY( N-1, AF( 4 ), 3, A, 1 )
|
||
|
CALL ZCOPY( N-1, AF( 3 ), 3, A( N+M+1 ), 1 )
|
||
|
END IF
|
||
|
CALL ZCOPY( N, AF( 2 ), 3, A( M+1 ), 1 )
|
||
|
ELSE
|
||
|
*
|
||
|
* Types 7-12: generate tridiagonal matrices with
|
||
|
* unknown condition numbers.
|
||
|
*
|
||
|
IF( .NOT.ZEROT .OR. .NOT.DOTYPE( 7 ) ) THEN
|
||
|
*
|
||
|
* Generate a matrix with elements from [-1,1].
|
||
|
*
|
||
|
CALL ZLARNV( 2, ISEED, N+2*M, A )
|
||
|
IF( ANORM.NE.ONE )
|
||
|
$ CALL ZDSCAL( N+2*M, ANORM, A, 1 )
|
||
|
ELSE IF( IZERO.GT.0 ) THEN
|
||
|
*
|
||
|
* Reuse the last matrix by copying back the zeroed out
|
||
|
* elements.
|
||
|
*
|
||
|
IF( IZERO.EQ.1 ) THEN
|
||
|
A( N ) = Z( 2 )
|
||
|
IF( N.GT.1 )
|
||
|
$ A( 1 ) = Z( 3 )
|
||
|
ELSE IF( IZERO.EQ.N ) THEN
|
||
|
A( 3*N-2 ) = Z( 1 )
|
||
|
A( 2*N-1 ) = Z( 2 )
|
||
|
ELSE
|
||
|
A( 2*N-2+IZERO ) = Z( 1 )
|
||
|
A( N-1+IZERO ) = Z( 2 )
|
||
|
A( IZERO ) = Z( 3 )
|
||
|
END IF
|
||
|
END IF
|
||
|
*
|
||
|
* If IMAT > 7, set one column of the matrix to 0.
|
||
|
*
|
||
|
IF( .NOT.ZEROT ) THEN
|
||
|
IZERO = 0
|
||
|
ELSE IF( IMAT.EQ.8 ) THEN
|
||
|
IZERO = 1
|
||
|
Z( 2 ) = DBLE( A( N ) )
|
||
|
A( N ) = ZERO
|
||
|
IF( N.GT.1 ) THEN
|
||
|
Z( 3 ) = DBLE( A( 1 ) )
|
||
|
A( 1 ) = ZERO
|
||
|
END IF
|
||
|
ELSE IF( IMAT.EQ.9 ) THEN
|
||
|
IZERO = N
|
||
|
Z( 1 ) = DBLE( A( 3*N-2 ) )
|
||
|
Z( 2 ) = DBLE( A( 2*N-1 ) )
|
||
|
A( 3*N-2 ) = ZERO
|
||
|
A( 2*N-1 ) = ZERO
|
||
|
ELSE
|
||
|
IZERO = ( N+1 ) / 2
|
||
|
DO 20 I = IZERO, N - 1
|
||
|
A( 2*N-2+I ) = ZERO
|
||
|
A( N-1+I ) = ZERO
|
||
|
A( I ) = ZERO
|
||
|
20 CONTINUE
|
||
|
A( 3*N-2 ) = ZERO
|
||
|
A( 2*N-1 ) = ZERO
|
||
|
END IF
|
||
|
END IF
|
||
|
*
|
||
|
DO 120 IFACT = 1, 2
|
||
|
IF( IFACT.EQ.1 ) THEN
|
||
|
FACT = 'F'
|
||
|
ELSE
|
||
|
FACT = 'N'
|
||
|
END IF
|
||
|
*
|
||
|
* Compute the condition number for comparison with
|
||
|
* the value returned by ZGTSVX.
|
||
|
*
|
||
|
IF( ZEROT ) THEN
|
||
|
IF( IFACT.EQ.1 )
|
||
|
$ GO TO 120
|
||
|
RCONDO = ZERO
|
||
|
RCONDI = ZERO
|
||
|
*
|
||
|
ELSE IF( IFACT.EQ.1 ) THEN
|
||
|
CALL ZCOPY( N+2*M, A, 1, AF, 1 )
|
||
|
*
|
||
|
* Compute the 1-norm and infinity-norm of A.
|
||
|
*
|
||
|
ANORMO = ZLANGT( '1', N, A, A( M+1 ), A( N+M+1 ) )
|
||
|
ANORMI = ZLANGT( 'I', N, A, A( M+1 ), A( N+M+1 ) )
|
||
|
*
|
||
|
* Factor the matrix A.
|
||
|
*
|
||
|
CALL ZGTTRF( N, AF, AF( M+1 ), AF( N+M+1 ),
|
||
|
$ AF( N+2*M+1 ), IWORK, INFO )
|
||
|
*
|
||
|
* Use ZGTTRS to solve for one column at a time of
|
||
|
* inv(A), computing the maximum column sum as we go.
|
||
|
*
|
||
|
AINVNM = ZERO
|
||
|
DO 40 I = 1, N
|
||
|
DO 30 J = 1, N
|
||
|
X( J ) = ZERO
|
||
|
30 CONTINUE
|
||
|
X( I ) = ONE
|
||
|
CALL ZGTTRS( 'No transpose', N, 1, AF, AF( M+1 ),
|
||
|
$ AF( N+M+1 ), AF( N+2*M+1 ), IWORK, X,
|
||
|
$ LDA, INFO )
|
||
|
AINVNM = MAX( AINVNM, DZASUM( N, X, 1 ) )
|
||
|
40 CONTINUE
|
||
|
*
|
||
|
* Compute the 1-norm condition number of A.
|
||
|
*
|
||
|
IF( ANORMO.LE.ZERO .OR. AINVNM.LE.ZERO ) THEN
|
||
|
RCONDO = ONE
|
||
|
ELSE
|
||
|
RCONDO = ( ONE / ANORMO ) / AINVNM
|
||
|
END IF
|
||
|
*
|
||
|
* Use ZGTTRS to solve for one column at a time of
|
||
|
* inv(A'), computing the maximum column sum as we go.
|
||
|
*
|
||
|
AINVNM = ZERO
|
||
|
DO 60 I = 1, N
|
||
|
DO 50 J = 1, N
|
||
|
X( J ) = ZERO
|
||
|
50 CONTINUE
|
||
|
X( I ) = ONE
|
||
|
CALL ZGTTRS( 'Conjugate transpose', N, 1, AF,
|
||
|
$ AF( M+1 ), AF( N+M+1 ), AF( N+2*M+1 ),
|
||
|
$ IWORK, X, LDA, INFO )
|
||
|
AINVNM = MAX( AINVNM, DZASUM( N, X, 1 ) )
|
||
|
60 CONTINUE
|
||
|
*
|
||
|
* Compute the infinity-norm condition number of A.
|
||
|
*
|
||
|
IF( ANORMI.LE.ZERO .OR. AINVNM.LE.ZERO ) THEN
|
||
|
RCONDI = ONE
|
||
|
ELSE
|
||
|
RCONDI = ( ONE / ANORMI ) / AINVNM
|
||
|
END IF
|
||
|
END IF
|
||
|
*
|
||
|
DO 110 ITRAN = 1, 3
|
||
|
TRANS = TRANSS( ITRAN )
|
||
|
IF( ITRAN.EQ.1 ) THEN
|
||
|
RCONDC = RCONDO
|
||
|
ELSE
|
||
|
RCONDC = RCONDI
|
||
|
END IF
|
||
|
*
|
||
|
* Generate NRHS random solution vectors.
|
||
|
*
|
||
|
IX = 1
|
||
|
DO 70 J = 1, NRHS
|
||
|
CALL ZLARNV( 2, ISEED, N, XACT( IX ) )
|
||
|
IX = IX + LDA
|
||
|
70 CONTINUE
|
||
|
*
|
||
|
* Set the right hand side.
|
||
|
*
|
||
|
CALL ZLAGTM( TRANS, N, NRHS, ONE, A, A( M+1 ),
|
||
|
$ A( N+M+1 ), XACT, LDA, ZERO, B, LDA )
|
||
|
*
|
||
|
IF( IFACT.EQ.2 .AND. ITRAN.EQ.1 ) THEN
|
||
|
*
|
||
|
* --- Test ZGTSV ---
|
||
|
*
|
||
|
* Solve the system using Gaussian elimination with
|
||
|
* partial pivoting.
|
||
|
*
|
||
|
CALL ZCOPY( N+2*M, A, 1, AF, 1 )
|
||
|
CALL ZLACPY( 'Full', N, NRHS, B, LDA, X, LDA )
|
||
|
*
|
||
|
SRNAMT = 'ZGTSV '
|
||
|
CALL ZGTSV( N, NRHS, AF, AF( M+1 ), AF( N+M+1 ), X,
|
||
|
$ LDA, INFO )
|
||
|
*
|
||
|
* Check error code from ZGTSV .
|
||
|
*
|
||
|
IF( INFO.NE.IZERO )
|
||
|
$ CALL ALAERH( PATH, 'ZGTSV ', INFO, IZERO, ' ',
|
||
|
$ N, N, 1, 1, NRHS, IMAT, NFAIL,
|
||
|
$ NERRS, NOUT )
|
||
|
NT = 1
|
||
|
IF( IZERO.EQ.0 ) THEN
|
||
|
*
|
||
|
* Check residual of computed solution.
|
||
|
*
|
||
|
CALL ZLACPY( 'Full', N, NRHS, B, LDA, WORK,
|
||
|
$ LDA )
|
||
|
CALL ZGTT02( TRANS, N, NRHS, A, A( M+1 ),
|
||
|
$ A( N+M+1 ), X, LDA, WORK, LDA,
|
||
|
$ RESULT( 2 ) )
|
||
|
*
|
||
|
* Check solution from generated exact solution.
|
||
|
*
|
||
|
CALL ZGET04( N, NRHS, X, LDA, XACT, LDA, RCONDC,
|
||
|
$ RESULT( 3 ) )
|
||
|
NT = 3
|
||
|
END IF
|
||
|
*
|
||
|
* Print information about the tests that did not pass
|
||
|
* the threshold.
|
||
|
*
|
||
|
DO 80 K = 2, NT
|
||
|
IF( RESULT( K ).GE.THRESH ) THEN
|
||
|
IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
|
||
|
$ CALL ALADHD( NOUT, PATH )
|
||
|
WRITE( NOUT, FMT = 9999 )'ZGTSV ', N, IMAT,
|
||
|
$ K, RESULT( K )
|
||
|
NFAIL = NFAIL + 1
|
||
|
END IF
|
||
|
80 CONTINUE
|
||
|
NRUN = NRUN + NT - 1
|
||
|
END IF
|
||
|
*
|
||
|
* --- Test ZGTSVX ---
|
||
|
*
|
||
|
IF( IFACT.GT.1 ) THEN
|
||
|
*
|
||
|
* Initialize AF to zero.
|
||
|
*
|
||
|
DO 90 I = 1, 3*N - 2
|
||
|
AF( I ) = ZERO
|
||
|
90 CONTINUE
|
||
|
END IF
|
||
|
CALL ZLASET( 'Full', N, NRHS, DCMPLX( ZERO ),
|
||
|
$ DCMPLX( ZERO ), X, LDA )
|
||
|
*
|
||
|
* Solve the system and compute the condition number and
|
||
|
* error bounds using ZGTSVX.
|
||
|
*
|
||
|
SRNAMT = 'ZGTSVX'
|
||
|
CALL ZGTSVX( FACT, TRANS, N, NRHS, A, A( M+1 ),
|
||
|
$ A( N+M+1 ), AF, AF( M+1 ), AF( N+M+1 ),
|
||
|
$ AF( N+2*M+1 ), IWORK, B, LDA, X, LDA,
|
||
|
$ RCOND, RWORK, RWORK( NRHS+1 ), WORK,
|
||
|
$ RWORK( 2*NRHS+1 ), INFO )
|
||
|
*
|
||
|
* Check the error code from ZGTSVX.
|
||
|
*
|
||
|
IF( INFO.NE.IZERO )
|
||
|
$ CALL ALAERH( PATH, 'ZGTSVX', INFO, IZERO,
|
||
|
$ FACT // TRANS, N, N, 1, 1, NRHS, IMAT,
|
||
|
$ NFAIL, NERRS, NOUT )
|
||
|
*
|
||
|
IF( IFACT.GE.2 ) THEN
|
||
|
*
|
||
|
* Reconstruct matrix from factors and compute
|
||
|
* residual.
|
||
|
*
|
||
|
CALL ZGTT01( N, A, A( M+1 ), A( N+M+1 ), AF,
|
||
|
$ AF( M+1 ), AF( N+M+1 ), AF( N+2*M+1 ),
|
||
|
$ IWORK, WORK, LDA, RWORK, RESULT( 1 ) )
|
||
|
K1 = 1
|
||
|
ELSE
|
||
|
K1 = 2
|
||
|
END IF
|
||
|
*
|
||
|
IF( INFO.EQ.0 ) THEN
|
||
|
TRFCON = .FALSE.
|
||
|
*
|
||
|
* Check residual of computed solution.
|
||
|
*
|
||
|
CALL ZLACPY( 'Full', N, NRHS, B, LDA, WORK, LDA )
|
||
|
CALL ZGTT02( TRANS, N, NRHS, A, A( M+1 ),
|
||
|
$ A( N+M+1 ), X, LDA, WORK, LDA,
|
||
|
$ RESULT( 2 ) )
|
||
|
*
|
||
|
* Check solution from generated exact solution.
|
||
|
*
|
||
|
CALL ZGET04( N, NRHS, X, LDA, XACT, LDA, RCONDC,
|
||
|
$ RESULT( 3 ) )
|
||
|
*
|
||
|
* Check the error bounds from iterative refinement.
|
||
|
*
|
||
|
CALL ZGTT05( TRANS, N, NRHS, A, A( M+1 ),
|
||
|
$ A( N+M+1 ), B, LDA, X, LDA, XACT, LDA,
|
||
|
$ RWORK, RWORK( NRHS+1 ), RESULT( 4 ) )
|
||
|
NT = 5
|
||
|
END IF
|
||
|
*
|
||
|
* Print information about the tests that did not pass
|
||
|
* the threshold.
|
||
|
*
|
||
|
DO 100 K = K1, NT
|
||
|
IF( RESULT( K ).GE.THRESH ) THEN
|
||
|
IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
|
||
|
$ CALL ALADHD( NOUT, PATH )
|
||
|
WRITE( NOUT, FMT = 9998 )'ZGTSVX', FACT, TRANS,
|
||
|
$ N, IMAT, K, RESULT( K )
|
||
|
NFAIL = NFAIL + 1
|
||
|
END IF
|
||
|
100 CONTINUE
|
||
|
*
|
||
|
* Check the reciprocal of the condition number.
|
||
|
*
|
||
|
RESULT( 6 ) = DGET06( RCOND, RCONDC )
|
||
|
IF( RESULT( 6 ).GE.THRESH ) THEN
|
||
|
IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
|
||
|
$ CALL ALADHD( NOUT, PATH )
|
||
|
WRITE( NOUT, FMT = 9998 )'ZGTSVX', FACT, TRANS, N,
|
||
|
$ IMAT, K, RESULT( K )
|
||
|
NFAIL = NFAIL + 1
|
||
|
END IF
|
||
|
NRUN = NRUN + NT - K1 + 2
|
||
|
*
|
||
|
110 CONTINUE
|
||
|
120 CONTINUE
|
||
|
130 CONTINUE
|
||
|
140 CONTINUE
|
||
|
*
|
||
|
* Print a summary of the results.
|
||
|
*
|
||
|
CALL ALASVM( PATH, NOUT, NFAIL, NRUN, NERRS )
|
||
|
*
|
||
|
9999 FORMAT( 1X, A, ', N =', I5, ', type ', I2, ', test ', I2,
|
||
|
$ ', ratio = ', G12.5 )
|
||
|
9998 FORMAT( 1X, A, ', FACT=''', A1, ''', TRANS=''', A1, ''', N =',
|
||
|
$ I5, ', type ', I2, ', test ', I2, ', ratio = ', G12.5 )
|
||
|
RETURN
|
||
|
*
|
||
|
* End of ZDRVGT
|
||
|
*
|
||
|
END
|