You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
188 lines
5.1 KiB
188 lines
5.1 KiB
2 years ago
|
*> \brief \b ZTPT06
|
||
|
*
|
||
|
* =========== DOCUMENTATION ===========
|
||
|
*
|
||
|
* Online html documentation available at
|
||
|
* http://www.netlib.org/lapack/explore-html/
|
||
|
*
|
||
|
* Definition:
|
||
|
* ===========
|
||
|
*
|
||
|
* SUBROUTINE ZTPT06( RCOND, RCONDC, UPLO, DIAG, N, AP, RWORK, RAT )
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
* CHARACTER DIAG, UPLO
|
||
|
* INTEGER N
|
||
|
* DOUBLE PRECISION RAT, RCOND, RCONDC
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
* DOUBLE PRECISION RWORK( * )
|
||
|
* COMPLEX*16 AP( * )
|
||
|
* ..
|
||
|
*
|
||
|
*
|
||
|
*> \par Purpose:
|
||
|
* =============
|
||
|
*>
|
||
|
*> \verbatim
|
||
|
*>
|
||
|
*> ZTPT06 computes a test ratio comparing RCOND (the reciprocal
|
||
|
*> condition number of the triangular matrix A) and RCONDC, the estimate
|
||
|
*> computed by ZTPCON. Information about the triangular matrix is used
|
||
|
*> if one estimate is zero and the other is non-zero to decide if
|
||
|
*> underflow in the estimate is justified.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Arguments:
|
||
|
* ==========
|
||
|
*
|
||
|
*> \param[in] RCOND
|
||
|
*> \verbatim
|
||
|
*> RCOND is DOUBLE PRECISION
|
||
|
*> The estimate of the reciprocal condition number obtained by
|
||
|
*> forming the explicit inverse of the matrix A and computing
|
||
|
*> RCOND = 1/( norm(A) * norm(inv(A)) ).
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] RCONDC
|
||
|
*> \verbatim
|
||
|
*> RCONDC is DOUBLE PRECISION
|
||
|
*> The estimate of the reciprocal condition number computed by
|
||
|
*> ZTPCON.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] UPLO
|
||
|
*> \verbatim
|
||
|
*> UPLO is CHARACTER
|
||
|
*> Specifies whether the matrix A is upper or lower triangular.
|
||
|
*> = 'U': Upper triangular
|
||
|
*> = 'L': Lower triangular
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] DIAG
|
||
|
*> \verbatim
|
||
|
*> DIAG is CHARACTER
|
||
|
*> Specifies whether or not the matrix A is unit triangular.
|
||
|
*> = 'N': Non-unit triangular
|
||
|
*> = 'U': Unit triangular
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] N
|
||
|
*> \verbatim
|
||
|
*> N is INTEGER
|
||
|
*> The order of the matrix A. N >= 0.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[in] AP
|
||
|
*> \verbatim
|
||
|
*> AP is COMPLEX*16 array, dimension (N*(N+1)/2)
|
||
|
*> The upper or lower triangular matrix A, packed columnwise in
|
||
|
*> a linear array. The j-th column of A is stored in the array
|
||
|
*> AP as follows:
|
||
|
*> if UPLO = 'U', AP((j-1)*j/2 + i) = A(i,j) for 1<=i<=j;
|
||
|
*> if UPLO = 'L',
|
||
|
*> AP((j-1)*(n-j) + j*(j+1)/2 + i-j) = A(i,j) for j<=i<=n.
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] RWORK
|
||
|
*> \verbatim
|
||
|
*> RWORK is DOUBLE PRECISION array, dimension (N)
|
||
|
*> \endverbatim
|
||
|
*>
|
||
|
*> \param[out] RAT
|
||
|
*> \verbatim
|
||
|
*> RAT is DOUBLE PRECISION
|
||
|
*> The test ratio. If both RCOND and RCONDC are nonzero,
|
||
|
*> RAT = MAX( RCOND, RCONDC )/MIN( RCOND, RCONDC ) - 1.
|
||
|
*> If RAT = 0, the two estimates are exactly the same.
|
||
|
*> \endverbatim
|
||
|
*
|
||
|
* Authors:
|
||
|
* ========
|
||
|
*
|
||
|
*> \author Univ. of Tennessee
|
||
|
*> \author Univ. of California Berkeley
|
||
|
*> \author Univ. of Colorado Denver
|
||
|
*> \author NAG Ltd.
|
||
|
*
|
||
|
*> \ingroup complex16_lin
|
||
|
*
|
||
|
* =====================================================================
|
||
|
SUBROUTINE ZTPT06( RCOND, RCONDC, UPLO, DIAG, N, AP, RWORK, RAT )
|
||
|
*
|
||
|
* -- LAPACK test routine --
|
||
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||
|
*
|
||
|
* .. Scalar Arguments ..
|
||
|
CHARACTER DIAG, UPLO
|
||
|
INTEGER N
|
||
|
DOUBLE PRECISION RAT, RCOND, RCONDC
|
||
|
* ..
|
||
|
* .. Array Arguments ..
|
||
|
DOUBLE PRECISION RWORK( * )
|
||
|
COMPLEX*16 AP( * )
|
||
|
* ..
|
||
|
*
|
||
|
* =====================================================================
|
||
|
*
|
||
|
* .. Parameters ..
|
||
|
DOUBLE PRECISION ZERO, ONE
|
||
|
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
|
||
|
* ..
|
||
|
* .. Local Scalars ..
|
||
|
DOUBLE PRECISION ANORM, BIGNUM, EPS, RMAX, RMIN
|
||
|
* ..
|
||
|
* .. External Functions ..
|
||
|
DOUBLE PRECISION DLAMCH, ZLANTP
|
||
|
EXTERNAL DLAMCH, ZLANTP
|
||
|
* ..
|
||
|
* .. Intrinsic Functions ..
|
||
|
INTRINSIC MAX, MIN
|
||
|
* ..
|
||
|
* .. Executable Statements ..
|
||
|
*
|
||
|
EPS = DLAMCH( 'Epsilon' )
|
||
|
RMAX = MAX( RCOND, RCONDC )
|
||
|
RMIN = MIN( RCOND, RCONDC )
|
||
|
*
|
||
|
* Do the easy cases first.
|
||
|
*
|
||
|
IF( RMIN.LT.ZERO ) THEN
|
||
|
*
|
||
|
* Invalid value for RCOND or RCONDC, return 1/EPS.
|
||
|
*
|
||
|
RAT = ONE / EPS
|
||
|
*
|
||
|
ELSE IF( RMIN.GT.ZERO ) THEN
|
||
|
*
|
||
|
* Both estimates are positive, return RMAX/RMIN - 1.
|
||
|
*
|
||
|
RAT = RMAX / RMIN - ONE
|
||
|
*
|
||
|
ELSE IF( RMAX.EQ.ZERO ) THEN
|
||
|
*
|
||
|
* Both estimates zero.
|
||
|
*
|
||
|
RAT = ZERO
|
||
|
*
|
||
|
ELSE
|
||
|
*
|
||
|
* One estimate is zero, the other is non-zero. If the matrix is
|
||
|
* ill-conditioned, return the nonzero estimate multiplied by
|
||
|
* 1/EPS; if the matrix is badly scaled, return the nonzero
|
||
|
* estimate multiplied by BIGNUM/TMAX, where TMAX is the maximum
|
||
|
* element in absolute value in A.
|
||
|
*
|
||
|
BIGNUM = ONE / DLAMCH( 'Safe minimum' )
|
||
|
ANORM = ZLANTP( 'M', UPLO, DIAG, N, AP, RWORK )
|
||
|
*
|
||
|
RAT = RMAX*( MIN( BIGNUM / MAX( ONE, ANORM ), ONE / EPS ) )
|
||
|
END IF
|
||
|
*
|
||
|
RETURN
|
||
|
*
|
||
|
* End of ZTPT06
|
||
|
*
|
||
|
END
|